
The Samhain Host Integrity
Monitoring System

The Samhain Host Integrity Monitoring System
This is version 2.4.5 of the Samhain manual.
Copyright © 2002-2023 Rainer Wichmann

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
You may obtain a copy of the GNU Free Documentation Licensefrom the Free Software Foundation by visiting their Web site or by writing
to: Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

This manual refers to version 4.5.0 of Samhain.

Table of Contents
1. Introduction .. 1

1. Backward compatibility .. 1
2. Compiling and installing ... 2

1. Overview ... 2
2. Requirements .. 3
3. Download and extract ... 3
4. Configuring the source ... 4

4.1. Some more configuration options ... 5
5. Build ... 6
6. Install .. 6

6.1. Important make targets ... 7
7. Customize .. 7
8. Initialize the baseline database ... 8
9. Run samhain ... 8
10. Files and directory layout .. 9

10.1. Trusted users and trusted paths .. 9
10.2. Directory layout .. 9
10.3. Runtime files .. 10
10.4. Installed files .. 10

11. The testsuite .. 11
3. General usage notes ... 13

1. How to invoke .. 13
2. Using daemontool (or similar utilities) ... 13
3. Controlling the daemon ... 13
4. Signals ... 14
5. PID file .. 14
6. Wait on file check ... 15
7. Log file rotation .. 15
8. Updating the file signature database .. 16
9. Improving the signal-to-noise ratio .. 16
10. Runtime options: command-line & configuration file .. 17
11. Remarks on the dnmalloc allocator .. 17
12. Support / Bugs / Problems .. 18

12.1. If samhain appears to hang indefinitely .. 18
4. Configuration of logging facilities ... 19

1. General .. 19
1.1. Severity levels .. 19
1.2. Classes .. 20
1.3. Error message customization ... 21

2. Available logging facilities .. 21
3. Activating logging facilities and filtering messages .. 22
4. E-mail .. 23

4.1. E-mail reports and their integrity .. 26
5. Log file .. 27

5.1. The log file and its integrity .. 27
6. Log server .. 29

6.1. Details ... 29
7. External facilities ... 29
8. Console .. 29
9. Prelude ... 30

9.1. Prelude-specific command-line options .. 30
9.2. Registering to a Prelude manager ... 31

10. Using samhain with nagios .. 31
11. Syslog .. 32
12. SQL Database .. 33

iii

The Samhain Host In-
tegrity Monitoring System

12.1. Upgrade to samhain 2.3 .. 34
12.2. Upgrade to samhain 2.4.4 .. 35
12.3. Upgrade to samhain 2.8.0+ .. 35
12.4. Upgrade to samhain 4.0 .. 36
12.5. MySQL configuration details ... 36

5. Configuring samhain, the host integrity monitor .. 37
1. Usage overview ... 37
2. Available checksum functions .. 38
3. File signatures ... 38
4. Defining file check policies: what, and how, to monitor .. 38

4.1. Monitoring policies .. 39
4.2. File/directory specification .. 40
4.3. Suppress messages about new/deleted/modified files 42
4.4. Dynamic database update (modified/disappeared/new files) 43
4.5. Recursion depth(s) ... 43
4.6. Hardlink check .. 44
4.7. Check for weird filenames .. 44
4.8. Support for prelink .. 45
4.9. SELinux attributes and Posix ACLs .. 45
4.10. Codes in messages about reported files .. 46
4.11. Loose directory checking .. 46
4.12. Storing the full content of a file ... 46
4.13. Who made changes to a file? ... 46
4.14. Skip checksumming for particular files .. 48
4.15. Graceful handling of log rotation .. 49
4.16. No such user/group .. 49

5. Excluding files and/or subdirectories (All except...) .. 49
6. Timing file checks ... 50

6.1. Using a second schedule ... 50
7. Initializing, updating, or checking ... 51
8. The file signature database .. 51
9. Checking the file system for SUID/SGID binaries .. 51

9.1. Quarantine SUID/SGID files ... 52
9.2. Configuration .. 53

10. Detecting Kernel rootkits ... 53
11. Monitoring login/logout events ... 53
12. Checking mounted filesystem policies .. 55
13. Checking sensitive files owned by users ... 55
14. Checking for hidden/fake/missing processes .. 56

14.1. Example configuration .. 57
15. Checking for open ports .. 58

15.1. Options .. 58
15.2. Example configuration .. 59

16. Logfile monitoring/analysis .. 60
16.1. Event Correlation ... 61
16.2. Reporting non-occurence of an event ... 61
16.3. Reporting bursts of similar, repeated events .. 62
16.4. Options .. 62
16.5. Example configuration .. 64

17. Checking the Windows registry .. 66
17.1. Options .. 66
17.2. Example configuration .. 67

18. Modules .. 67
19. Performance tuning ... 67
20. Storing the full content of a file (aka: WHAT has changed?) 68

20.1. Example configuration .. 69
20.2. Implementation details .. 69

21. Inotify support on Linux (instantaneous reports, no I/O load) 70

iv

The Samhain Host In-
tegrity Monitoring System

21.1. Example configuration .. 70
6. Configuring yule, the log server ... 72

1. General .. 72
2. Important installation notes .. 72
3. Registering a client .. 73
4. Enabling logging to the server .. 75
5. Enabling baseline database / configuration file download from the server 75

5.1. Configuration file .. 75
5.2. Database file ... 76

6. Rules for logging of client messages ... 76
7. Detecting 'dead' clients .. 77
8. The HTML server status page .. 77
9. Chroot .. 78
10. Restrict access with libwrap (tcp wrappers) ... 79
11. Sending commands to clients ... 79

11.1. Communicating with the server .. 80
11.2. Authenticating to the server ... 80

12. Syslog logging ... 80
13. Server-to-server relay .. 81
14. Performance tuning ... 81

7. Hooks for External Programs ... 83
1. Pipes .. 83
2. System V message queue .. 83
3. Calling external programs .. 83

3.1. Example setup for paging ... 85
8. Change Control Process Integration ... 86

1. Use cases ... 86
1.1. Case I: Machine taken offline for a large patch ... 86
1.2. Case II: Installation of a new package ... 87
1.3. Case III: Configuration change / Package upgrade 88

2. Limitations .. 88
9. Additional Features — Signed Configuration/Database Files .. 90

1. Compiling with support for signatures ... 90
1.1. If using GnuPG ... 90
1.2. If using signify ... 91

2. Installation .. 92
3. The samhainadmin script ... 92

10. Additional Features — Stealth .. 94
1. Hiding the executable ... 94

1.1. Using kernel modules to hide samhain (Linux/ix86 only) 95
2. Packing the executable .. 95

11. Deployment to remote hosts ... 96
1. Method A: The deployment system ... 96

1.1. Requirements .. 97
1.2. Layout of the deployment system ... 97
1.3. Customizing the system .. 98
1.4. Using the deploy.sh script ... 99
1.5. deploy.sh info ... 100
1.6. deploy.sh clean .. 100
1.7. deploy.sh download .. 100
1.8. deploy.sh checksrc ... 101
1.9. deploy.sh build .. 101
1.10. deploy.sh install ... 102
1.11. deploy.sh uninstall .. 103
1.12. Usage notes ... 103

2. Method B: The native package manager ... 103
2.1. Building an RPM ... 104
2.2. Building an HP-UX package .. 105

v

The Samhain Host In-
tegrity Monitoring System

2.3. Building a Solaris package .. 105
2.4. Building a Gentoo Linux package ... 105
2.5. Building a Debian package .. 105

12. Security Design .. 106
1. Usage ... 106

1.1. Client security in a client/server system ... 106
2. Integrity of the samhain executable ... 106
3. Client executable integrity ... 107
4. The server ... 107
5. General ... 108

A. List of options for the configure script .. 109
1. General ... 109
2. Optional modules to perform additional checks .. 111
3. OpenPGP Signatures on Configuration/Database Files .. 111
4. OpenBSD Signify Signatures on Configuration/Database Files 111
5. Client/Server Connectivity ... 112
6. Paths .. 112

B. List of command line options .. 114
1. General ... 114
2. samhain .. 115
3. yule ... 116

C. Configuration file syntax and options .. 117
1. General ... 117

1.1. Shell expansion ... 117
1.2. Conditionals .. 118

2. Files to check .. 119
3. Severity of events ... 119
4. Logging thresholds ... 120
5. Watching login/logout events ... 121
6. Checking for SUID/SGID files ... 121
7. Checking for mount options ... 121
8. Checking for user files .. 122
9. Checking for hidden/fake/required processes ... 122
10. Checking for open ports .. 122
11. Logfile monitoring/analysis .. 123
12. Database ... 124
13. Miscellaneous .. 124
14. External .. 129
15. Clients .. 129

D. List of database fields .. 131
1. General ... 131
2. Modules .. 132
3. Syslog .. 132

E. List of recognized file types .. 133

vi

Chapter 1. Introduction
samhain is a file and host integrity and intrusion alert system suitable for single hosts as well as for
large, UNIX-based networks. samhain offers advanced features to support and facilitate centralized
monitoring.

In particular, samhain can optionally be used as a client/server system with monitoring clients on
individual hosts, and a central log server that collects the messages of all clients.

The configuration and database files for each client can be stored centrally and downloaded by clients
from the log server. Using conditionals (based on hostname, machine type, OS, and OS release, all
with regular expresions) a single configuration file for all hosts on the network can be constructed.

The client (or standalone) part is called samhain, while the server is referred to as yule. Both can run
as daemon processes.

1. Backward compatibility
Samhain version 4.0 introduces a change in the baseline database format. This does not affect the
client/server communication, i.e. it is possible to mix pre-4.0 and 4.0+ clients and server.

If you are using the Beltane II WebGUI, you need version 2.5+ to handle the new database format.

Finally, if you are planning to make use of the new features for integrating samhain into your change
control process, you will need Samhain version 4.0+ for clients and sever, and Beltane II version 2.5+.

1

Chapter 2. Compiling and installing
Samhain as a client/server system

This chapter focuses on building a standalone samhain executable. For a client/server
system, client and server executable are built from the same source, but with different
options for the 'configure' script (see Section 4 (p. 4)).

Please refer to the chapter Chapter 6 (p. 72) for an explanation of the client/server
setup.

1. Overview
Download:

 sh$ wget http://la-samhna.de/samhain/samhain-current.tar.gz

Extract (and verify PGP signature):

 sh$ gunzip -c samhain-current.tar.gz | tar xvf -
 sh$ gpg --verify samhain-N.N.N.tar.gz.asc samhain-N.N.N.tar
 sh$ gunzip -c samhain-N.N.N.tar.gz | tar xvf -
 sh$ cd samhain-N.N.N

Configure:

 sh$./configure

Compile:

 sh$ make

Install:

 sh$ make install

Customize:

 sh$ vi /etc/samhainrc

Initialize the baseline database:

 sh$ samhain -t init

Start the samhain daemon:

2

Compiling and installing

 sh$ samhain -t check -D

2. Requirements
POSIX environment Samhain will only compile and run in a POSIX operating sys-

tem, or an emulation thereof (e.g. the free Cygwin POSIX em-
ulation for Windows XP/2000).

ANSI C compiler and build system You need an ANSI C compiler to compile samhain. The GNU
C compiler (GCC) from the Free Software Foundation (FSF) is
fine. If your vendor's compiler is ANSI compliant, you should
give it a try, since it might produce faster code. Also you will
need to have standard tools like make in your PATH (the make
tool is part of the POSIX standard).

[OPTIONAL] GnuPG / signi-
fy-openbsd

If you want to use signed configuration and database files (this
is an optional feature), either GnuPG (gpg) or the OpenBSD
signify application (signify-openbsd on Debian-based Linux
systems) must be installed.

[OPTIONAL] libacl/libattr Samhain can check and verify POSIX ACLs (access control
lists, on operating systems supporting them) and SELinux at-
tributes (Linux). This feature is only compiled in if the required
libraries and header files are present (e.g. on Linux the libacl/li-
battr development packages; in Debian these are named liba-
cl1-dev, libattr1-dev).

[OPTIONAL] libz Samhain can store the content of files in the baseline database
(for files smaller than 9200 bytes after zlib compression). This
feature is only available if the zlib library and header files are
present (e.g. on Linux the libz development package; in Debian
this is named zlib1g-dev).

[OPTIONAL] PCRE Samhain can monitor logfiles of other applications, e.g. Syslog,
Apache (or other webservers with similar log formats), Sam-
ba, or pacct (BSD-style process accounting). This extension
requires the PCRE (Perl Compatible Regular Expressions) li-
brary, e.g. on linux the libpcre package (and for compiling, al-
so the libpcre development package). In Debian, this would be
libpcre3 and libpcre3-dev.

3. Download and extract
The current version of samhain can be downloaded from http://www.la-samhna.de/samhain/samhain-
current.tar.gz. Older versions of samhain are available from the online archive. You should always
make sure that you have a complete and unmodified version of samhain. This can be done by verifying
the PGP signature (see below).

The downloaded tarball will contain exactly two files:

1. A tarball named samhain-N.N.N.tar.gz (N.N.N is the version number) containing the source tree,
and

2. the PGP signature for this tarball, i.e. a file named samhain-N.N.N.tar.gz.asc. use of the dnmalloc
allocator that is the default since samhain 2.4.5, and reverts to using the standard allocator provided
by your system.

3

Compiling and installing

 sh$ wget http://la-samhna.de/samhain/samhain-current.tar.gz
 sh$ gunzip -c samhain-current.tar.gz | tar tvf -
 -rw-r--r-- 500/100 920753 2004-05-24
 19:57:55 samhain-1.8.8.tar.gz -rw-r--r-- 500/100 189
 2004-05-24 19:58:29 samhain-1.8.8.tar.gz.asc

You might wish to verify the PGP signature now, in order to make sure that you have received a
complete and unmodified version of samhain. All samhain releases are signed with the key 0F571F6C
(Rainer Wichmann).

Key fingerprint = EF6C EF54 701A 0AFD B86A F4C3 1AAD 26C8 0F57 1F6C

 sh$ gpg --keyserver pgp.mit.edu --recv-keys 0F571F6C
 sh$ gpg --verify samhain-N.N.N.tar.gz.asc samhain-N.N.N.tar.gz

Now you can proceed to extract the source tarball:

 sh$ gunzip -c samhain-N.N.N.tar.gz | tar tvf -

This will create a new subdirectory samhain-N.N.N under your current directory. You should cd
into this subdirectory to proceed with configuring the source:

 sh$ cd samhain-N.N.N

4. Configuring the source
Before you can start to compile, it is neccessary to configure the source for your particular platform and
your personal requirements. This is done by running the ./configure command in the source directory.
If you type ./configure with no options, the source will get configured with the default options. In
particular, a standalone version of samhain will get built which uses the Filesystem Hierarchy Standard
(FHS) for file/directory layout. This is not the standard GNU layout of 'everything under /usr/local'.

Paths

(A) samhain is a Filesystem Hierarchy Standard (FHS) compliant application. Thus the
default directory layout is not the standard GNU layout (see Section 10 (p. 9)).

(B) samhain has a concept of trusted users, and will refuse to run if the path to critical
files is writeable by users not in its list of trusted users (default: root, and the user who
has started samhain). Please read Section 10.1 (p. 9) for details.

To change the defaults, ./configure accepts a variety of command-line options and environment vari-
ables (use ./configure --help for a complete list). The available command line options are listed and
explained in Appendix A (p. 109) .

To configure a standalone version of samhain :

 sh$./configure [more options]

Important remark on client/server use

Please read Chapter 6 (p. 72) if you intend to use samhain as a client/server system.
Things will not work automagically just because you compiled a client and a server

4

Compiling and installing

version of samhain. In particular, clients need to authenticate themselves to the server,
and special configure options are required if you want to keep the configuration file(s)
and the baseline database(s) on the central server.

To configure a client version of samhain that can connect to a central server:

 sh$./configure --enable-network=client [more options]

To configure a server version of samhain that will act as a central log server:

 sh$./configure --enable-network=server [more options]

4.1. Some more configuration options
If you want to use any options/modules that are not enabled by default (e.g. because the majority of
users do not require them, or because they require additional programs and/or libraries), at this point
you need to specify such options:

• To compile in the module to check for SUID files (see Section 9 (p. 51)) use ./configure --
enable-suidcheck

• To compile in the module to monitor login/logout events (see Section 11 (p. 53)) use ./config-
ure --enable-login-watch

• To compile in the module to check mount options for mounted filesystems (see Section 12 (p.
55)) use ./configure --enable-mounts-check

• To compile in the module to specify files relative to user home directories (see Section 13 (p. 55)
) use ./configure --enable-userfiles

• To compile in code for logging to an RDMS, (see Section 12 (p. 33)) use ./configure --en-
able-xml-log --with-database= oracle/mysql/postgresql

• To compile in code for logging to the Prelude IDS, (see Section 9 (p. 30)) use ./configure --
with-prelude

• To use PGP-signed configuration files, (see Chapter 9 (p. 90)) use ./configure --with-gpg= /
path/to/gpg . Please review Chapter 9 (p. 90) for further information and additional options
to compile in the key fingerprint and/or the checksum of the gpg executable.

• To use OpenBSD signify-signed configuration files, (see Chapter 9 (p. 90)) use ./configure
--with-signify= /path/to/signify . Please review Chapter 9 (p. 90) for further informa-
tion and additional options to compile in the key checksum and/or the checksum of the signify
executable.

• To compile samhain for use of the 'stealth' options to hide its presence, please review Chapter 10
(p. 94) for the available options.

• To configure a server version of samhain that will act as a central log server, use ./configure --
enable-network=server

• To configure a client version of samhain that can connect to a central server, use ./configure --
enable-network=client . Please refer to the chapter Chapter 6 (p. 72) for an explanation of the
client/server setup, in particular further options that you need if you want to store configuration
files and baseline databases on the server(see Section 5 (p. 75)).

5

Compiling and installing

5. Build
After configuring the source, to build samhain you just have to type the command:

 sh$ make

The standalone/client executable (samhain) and the log server (yule) cannnot be compiled simulta-
neously. You need to run ./configure && make separately for both.

If you want to use your native package manager for installation, you might rather want to build a
binary package. samhain has support for RPM (rpm), Debian (deb), Gentoo (tbz2), HP-UX (depot),
and Solaris packages. Instead of simply typing make , you need to type:

 sh$ make rpm|deb|tbz2|depot|solaris-pkg

This will create a custom binary package according to the options that you used when configuring the
source (see previous section). For more details, see Section 2 (p. 103) .

If you don't want to include documentation, you can instead use:

 sh$ make rpm-light|deb-light|depot-light|tbz2-light|solaris-pkg-light

Finally, the Makefile supports building a portable (Unix) binary installer package based on the make-
self installer ((c) 1998-2004 Stephane Peter). There will be no documentation included. Just type:

 sh$ make run

6. Install
After successful compilation, you can install samhain by typing:

 sh$ make install

The installation routine will not overwrite your configuration file from a previous installation.

Executables will be stripped upon installation. On Linux i386 and FreeBSD i386, the sstrip utility
(copyright 1999 by Brian Raiter, under the GNU GPL) will be used to strip the executable even more,
to prevent debugging with the GNU gdb debugger.

After installation, you will be offered to run make install-boot in order to install the init scripts that
are required to start samhain automatically when your system (re-)boots. For many operating systems
(Linux, *BSD, Solaris, HP-UX, IRIX), configure will generate init scripts, and make install-boot
will figure out which of them to install, and where (if the correct distribution cannot be determined,
none of them will be installed).

 sh$ make install-boot

6

Compiling and installing

6.1. Important make targets

 sh$ make install

Create the required directories (if not existing already), and install the compiled executable and the
configuration file.

 bash$ make DESTDIR=/somedir install

Install as if /somedir is the root directory. Useful for creating packages or installing for chroot
(server).

 sh$ make install-boot

Install runlevel start/stop scripts or create inittab entry (AIX) in order to start the daemon upon system
boot. Supported on Linux, *BSD, Solaris, HP-UX, AIX(*), IRIX(*) [(*) untested].

 sh$ make uninstall

Uninstall the executable and remove directories if empty. Does not uninstall the configuration file.

 sh$ make purge

As make uninstall , but also remove the the configuration file.

 sh$ make uninstall-boot

Uninstall the runlevel start/stop scripts.

Tip

You can save the script samhain-install.sh and use it for uninstalling if you ever want
to remove samhain:

 sh$ samhain-install.sh purge
 sh$ samhain-install.sh uninstall-boot

7. Customize
samhain comes with default configuration files for several operating systems: samhainrc.linux,
samhainrc.solaris, samhainrc.freebsd, samhainrc.aix5.2.0(and yulerc for the
server). The installation routine will choose the one matching closest your system, or fall back to
samhainrc.linux, if no good match could be found. However, all these configuration files are
kept very general, and most probably you want to adjust settings like:

7

Compiling and installing

• which files/directories should be checked

• which logging facilities should be used

The default location of the configuration file is /etc/samhainrc(see Section 10 (p. 9)). To
customize, type:

 sh$ vi /etc/samhainrc

The default configuration file is heavily commented to help you. For a list of all runtime configuration
directives, please have a look at Appendix C (p. 117) .

If you have any typos or other errors in your configuration file, samhain will log warning messages
upon startup including the corresponding line number of the configuration file.

8. Initialize the baseline database
samhain works by comparing the present state of the filesystem agains a baseline database. Of course,
this baseline database must be initialized first (and preferably from a known good state !). To perform
the initialization (i.e. create the baseline database), type:

 sh$ samhain -t init -p
 info

(with -p info, messages of severity 'info' or higher will be printed to your terminal/console).

If the database file already exists, samhain -t init will append to it. This is a feature that is intended
to help you operating samhain in a slightly more stealthy way: you can append the database e.g. to a
JPEG picture (and the picture will still display normally - JPEG ignores appended 'garbage').

Note:

It is usually an error to run samhain -t init twice, because (a) it will append a second
baseline database to the existing one, and (b) only the first baseline database will be
used. Use samhain -t update for updating the baseline database. Delete or rename the
baseline database file if you really want to run samhain -t init a second time.

9. Run samhain
After successful initialization of the baseline database, you can run samhain in 'check' mode by typing:

 sh$ samhain -t check

To run samhain as a daemon, you can either use the command line option '-D', or set daemon mode
in the configuration file with the option 'Daemon=yes'.

Tip

When testing samhain for the first time, you may want to use the command line option --
foreground to run samhain in the foreground rather than as daemon. This allows to spot
the reason for eventual problems much easier.

8

Compiling and installing

10. Files and directory layout
Tip

samhain has its own set of trusted users. Paths to critical files (e.g. the configuration
file) must be writeable by trusted users only. Failure to ensure this (e.g. by compiling
in an appropriate set of trusted users) is one of the most frequent reasons for problems.
See below for details.

10.1. Trusted users and trusted paths
• Trusted users are root and the effective user of the process (usually, the effective user will be root

herself). Additional trusted users can be defined in the configuration file (see Sect. Section 5 (p.
27) for an example), or at compile time, with the option

 bash$./configure --with-trusted=0,...

• A trusted path is a path with all elements writeable only by trusted users. samhain requires the paths
to the configuration and log file to be trusted paths, as well as the path to the pid file.

If a path element is group writeable, all group members must be trusted. If the path to the configuration
file itself is writeable by other users than root and the effective user these must be defined as trusted
already at compile time.

Note

The list of group members in /etc/group may be incomplete or even empty. samhain
will check /etc/passwd(where each user has a GID field) in addition to /etc/
group to find all members of a group.

10.2. Directory layout
samhain conforms to the FHS, which mandates a directory layout that is different from the default
GNU layout (everything in subdirectories under /etc/local).

Tip

There is an option ./configure --enable-install-name= NAME . When this option is used,
not only the executable is installed as NAME, but also in all the paths, samhain is replaced
with NAME.

Note

For the yule server, replace samhain with yule in the paths explained below.

The following table explains which directory layout results from ./configure --prefix= PREFIX

sbindir mandir sysconfdir localstatedir

PREFIX (none)

/usr/local/sbin /usr/local/man /etc /var

PREFIX USR (all capital)

/usr/sbin /usr/share/man /etc /var

PREFIX OPT (all capital)

9

Compiling and installing

sbindir mandir sysconfdir localstatedir

/opt/samhain/bin /opt/samhain/man /etc/opt /var/opt/samhain

PREFIX /other

/other/sbin /other/share/man /other/etc /other/var

The file signature database will be written to localstatedir/lib/samhain/samhain_file, the pid
file to localstatedir/run/samhain.pid, and the log file to localstatedir/log/samhain_log.
In addition, yule writes an HTML status file to localstatedir/log/yule/yule.html

To get a more fine-grained control on the layout, the following configure options are provided

• --with-config-file=FILE — The path of the configuration file.

• --with-log-file=FILE — The path of the log file.

• --with-pid-file=FILE — The path of the pid file.

• --with-data-file=FILE — The path of the file signature database file.

• --with-html-file=FILE — The path of the HTML status file (server only).

10.3. Runtime files

10.3.1. Standalone or client

Purpose Directory

Logfiles localstatedir/log/

Data files localstatedir/lib/samhain/

Pid file localstatedir/run/

10.3.2. Server

Note

The server will drop root privileges after startup. I does not need write access to the data
files, thus the data file directory is chmod 555 on installation. It does need write access
to the log file directory. As the system logfile directory usually is owned by root, the
install script will by default create a subdirectory and chown it to the unprivileged yule
user. The PID file is written before dropping root.

Purpose Directory

Logfiles localstatedir/log/yule/

Data files localstatedir/lib/yule/

Pid file localstatedir/run/

10.4. Installed files

10.4.1. Standalone or client

File Installed to Mode

samhain sbindir/samhain 700

samhainrc sysconfdir/samhainrc 600

10

Compiling and installing

File Installed to Mode

samhain.8 mandir/man8/samhain.8 644

samhainrc.5 mandir/man5/samhainrc.5 644

(samhain_setpwd) sbindir/samhain_setpwd 700

(samhain_stealth) sbindir/samhain_stealth 700

10.4.2. Server

File Installed to Mode

yule sbindir/yule 700

yulectl sbindir/yulectl 700

yulerc sysconfdir/yulerc 600

samhain.8 mandir/man8/yule.8 644

samhainrc.5 mandir/man5/yulerc.5 644

samhain_setpwd sbindir/yule_setpwd 700

11. The testsuite
Samhain comes with a suite of verification/regression tests located in the test/ subdirectory of
the source tree.

The driver script is test/test.sh. Calling it without arguments will provide some usage informa-
tion. The script should be called as:

 bash$ test/test.sh [options] <test_number>

To get the list of possible tests, use:

 bash$ test/test.sh -h

The recognized options are as follows:

1. -q|--quiet No output; success/failure is reported vi exit status only.

2. -v|--verbose Report additional information.

3. -s|--stoponerr Stop when a test fails.

4. --no-cleanup Don't clean up generated test data (useful to investigate the reason for a failure).

5. --srcdir=... Tell the script the location of the source tree (not necessary if run from the top source
directory).

6. --color=always|never|auto Whether to use colour for output. Default is 'auto' (no colour if stdout
is not a terminal).

7. --really-all This option enable additional test that are not run usually (see below).

The --really-all option

This option enables the following additional tests:

11

Compiling and installing

1. clang/cppcheck As part of the compile test suite (test 1), the cppcheck checker will
be used, and the source will be compiled twice, once with the default compiler and
second with the clang compiler.

2. prelude logging Logging to prelude will be tested as part of test 7. Requires pre-
lude-manager, and requires that samhain is already registered as analyzer. This test
is designed such that it should not interfere with an eventually running instance of
prelude-manager.

3. mysql/postgresql logging Logging to mysql and/or postgresql will be tested with tests
13/14. Requires a running database with an existing default setup (database/user/pass-
word = samhain/samhain/samhain, table = log).

CAVEAT

The database tests (13/14) with --really-all will modify (i.e. log to) the database. These
are the only tests that are not confined to the directory where the test is run.

12

Chapter 3. General usage notes
1. How to invoke

From the command line

• samhain -t init [more options] — To initialize the database

• samhain -t check [more options] — To check against the database

By default, samhain will not become a daemon, but stay in the foreground. Daemon mode must be set
in the configuration file or on the command line. Also by default, samhain will neither initialize its file
system database nor check the file system against it. The desired mode must be set in the configuration
file or on the command line. A complete list of command line options is given in the appendix.

To start as daemon during the boot sequence

For Linux (Debian, Redhat, Gentoo, and SuSE), *BSD, Solaris, HP-UX, AIX, IRIX make install-boot
will setup your system for starting the daemon upon system boot (if the correct OS/distribution cannot
be determined, nothing will be done).

For any other system, you need to figure out by yourself how to start samhain during the boot sequence.

2. Using daemontool (or similar utilities)
samhain does not auto-background itself (to become a daemon) unless explicitely specified in the
config file or on the command line. However, normally it runs in single-shot mode if not used as
daemon. To cause samhain to enter the main loop while running in the foreground (as required if you
want to use daemontool), you need to start with the option -f or --forever. Note that yule, the server,
will always loop.

3. Controlling the daemon
As part of their boot concept, some systems have individual start/stop scripts for each service (dae-
mon). As a minimum, these scripts take either 'start' or 'stop' as argument, sometimes also e.g. 're-
load' (to reload the configuration), 'restart', or 'status' (check whether the daemon is running). While
this is convenient, there are also a number of problems:

• Some systems do not have such start/stop scripts.

• There is no standard for the location of these scripts.

• There is no standard for the arguments such a script may take, neither for their interpretation (e.g.:
on Linux distribution XYZ, do the start/stop scripts take 'status' as argument, and if, is the status
reported by printing a message or by the exit status ?)

To provide a portable interface for controlling the samhain daemon, the executable itself can serve for
this purpose (only if invoked by the superuser) The supported actions, which must be given as first
argument on the command line, are:

• start Start samhain. Arguments after 'start' are passed to the process. Daemon mode will be enforced,
as well as running in 'check' mode, irrespective of command line or config file settings.

• stop Stop the daemon. On Linux and Solaris, actually all running instances of samhain are stopped,
even if no pid file is available.

• restart Stop and start.

13

General usage notes

• reload or force-reload Reload the configuration file.

• status Check whether the daemon is running.

Success/failure is reported via the exit status as follows: 0 Success. (On Linux/Solaris, stop will always
be successful, on other systems only if the pid file is found.) 1 Unspecified error. 4 User had insufficient
privilege. 5 Program is not installed. 7 Program is not running.

If the status command is given: 0 Program is running. 1 Program is dead and /var/run pid file exists.
3 Program is stopped. 4 Program status is unknown.

I.e., this interface behaves as mandated by the LSB Standard for init scripts.

4. Signals
On startup, all signals will be reset to their default. Then a signal handler will be installed for all signals
that (i) can be trapped by a process and (ii) whose default action would be to stop, abort, or terminate
the process, to allow for graceful termination.

For SIGSEGV, SIGILL, SIGBUS, and SIGFPE, a 'fast' termination will occur, with only minimal
cleanup that may result in a stale pid file being left.

If the operating system supports the siginfo_t parameter for the signal handling routine (see man
sigaction), the origin of the signal will be checked.

The following signals can be sent to the process to control it:

• SIGUSR1 Switch on/off maximally verbose output to the console.

• SIGUSR2 Suspend/continue the process, and (on suspend) send a message to the server. This mes-
sage has the same priority as timestamps. This signal allows to run samhain -t init -e none on the
client to regenerate the database, with download of the configuration file from the server, while the
daemon is suspended (normally you would get errors because of concurrent access to the server by
two processes from the same host).

• SIGTERM Terminate the process.

• SIGQUIT Terminate the server process after processing all currently pending requests from clients.
Terminate the client process after finishing the current task (from the terminal, SIGQUIT usually
is Ctrl+\).

• SIGHUP Re-read the configuration file. Note that it is not possible to override command-line op-
tions given at startup.

• SIGTTIN / SIGABRT Unlock the log file, wait three seconds, then proceed. At the next access, the
log file will be locked again and a fresh audit trail -- with a fresh signature key -- will be started.
This allows log rotation without splitting an audit trail. See Sect.~ Section 5.1 (p. 27) .

• SIGTTOU Perform a file check. Only client/standalone, and only in daemon mode.

• SIGTSTP Perform a silent file check. Only client/standalone, and only in daemon mode. The config
file option SetFullSilent (boolean) can be used to switch on/off any informational message (e.g.
start/end file check). The result of the file check can still be queried from the message queue via
samhain -w For security reasons, silent scans are not taken into consideration for the time till next
file check.

5. PID file
samhain generates a PID file if it is run as a daemon process. You can configure the path to the PID
file at compile time, either explicitely using the ./configure --with-pid-file=FILE option, or via the
./configure --prefix=PREFIX option.

14

General usage notes

6. Wait on file check
As of version 4.0, samhain allows to perform a wait on check operation which waits on the end of the
current filesystem scan and indicates the result via the exit status:

samhain -w seconds

The argument for this option is the timeout. The maximum timeout value is 86400 (one day). A timeout
of zero is interpreted as no timeout. A negative timeout is interpreted in the following way:

1. First, wait until the Samhain daemon has initalized.

2. Then, wait for the end of the filesystem scan with a timeout of (abs(seconds) - 1). I.e. a timeout of
-1 will become 0, a timeout of -601 seconds will become 600 seconds.

The exit status has the following meaning:

0 The deamon currently performs no file system scan, and no issues have been reported in the last
scan.

1 The deamon currently performs no file system scan, and one or more issues have been reported
in the preceding scan.

2 The wait operation has timed out while the deamon was performing a file system scan.

3 An error has occured. Usually this would be either an access error (the wait operation needs at
least group privilege), or a non-negative argument has been given and the deamon has not yet
initialized (or isn't running).

7. Log file rotation
samhain locks the logfile using a lock file. This lock file has the same path as the log file, with .lock
appended. After sending SIGTTIN or SIGABRT to the samhain daemon, it will first finish its current
tast (this may take some time), then unlock the log file (i.e. remove the logfile.lock file), wait
three seconds, then proceed. Thus, to rotate the log file, you should use something like the following
script:

 #! /bin/sh

 if test -f /usr/local/var/run/samhain.pid; then \
 PIN=`cat /usr/local/var/run/samhain.pid`; \
 /bin/kill -TTIN $PIN; \
 sleep 1; \
 AA=0; \
 while test "x$AA" != "x120"; do \
 AA=$((AA + 1)); \
 if test -f /usr/local/var/log/samhain_log.lock; then \
 sleep 1; \
 else \
 break; \
 fi \
 done; \
 fi
 mv /usr/local/var/log/samhain_log /usr/local/var/log/oldlog

If you use the 'logrotate' tool, you could use the following (untested):

15

General usage notes

 /usr/local/var/log/samhain_log {
 weekly
 rotate 52
 nocreate
 missingok
 compress
 prerotate
 if test -f /usr/local/var/run/samhain.pid; then \
 PIN=`cat /usr/local/var/run/samhain.pid`; \
 /bin/kill -TTIN $PIN; \
 sleep 1; \
 AA=0; \
 while test "x$AA" != "x120"; do \
 AA=$((AA + 1)); \
 if test -f /usr/local/var/log/samhain_log.lock; then \
 sleep 1; \
 else \
 break; \
 fi \
 done; \
 fi
 endscript
 }

8. Updating the file signature database
The samhain daemon only reads the file signature database on startup (also see Section 4.4 (p. 43)
on this). You can update the database while the daemon is running, as long as you don't interfere
with its logging (i.e. you should run samhain -t update -l none to make sure the log file is not ac-
cessed). Interactive updates are supported with the command line flag --interactive , updates using a
list of 'good' files are supported with the command line flag --listfile= path_to_listfile , where
path_to_listfile should be the absolute path to a text file listing the 'good' files (absolute paths, one
per line).

If you are using samhain in client/server mode and keep the baseline database on the server, then there
are two ways to update the database:

• The preferred method is to use the web-based (PHP4) beltane frontend, which allows to review
client messages and to perform server-side updates of baseline databases.

• Temporarily scp the baseline database to the client, run samhain -t update , and scp the baseline
database back to the server. If you want to keep the client daemon running during the update, you
need to avoid concurrent access to the log file (use '-l none' for the update process). Also, you need
to avoid concurrent access to the server (use '-e none' for the update process).

If you must access the server concurrently (e.g. to download the configuration file for the update
process), you need to suspend the client daemon process temporarily using SIGUSR2 (note that
SIGSTOP/SIGCONT will not do what you want, because the daemon must inform the server that
it is about to suspend). Use SIGUSR2 again to wake up the daemon from suspend mode.

9. Improving the signal-to-noise ratio
To get a good signal-to-noise ratio (i.e. few false alerts), you need to know which files should be
checked, and which not (looking at the 'last modified' timestamp may be helpful, if in doubt).

To see how to set recursion depths, implement 'check all but xxx' policies etc., have a look at Sec-
tion 4.1 (p. 39) .

16

General usage notes

As samhain runs a a daemon, it is capable to 'remember' all file system changes, thus you won't get
bothered twice about the same problem.

10. Runtime options: command-line & config-
uration file

All command line options are described in Appendix B (p. 114) . Note that depending on the ./
configure options used for compiling, not all options may be available. You can get a list of valid
options with samhain --help .

All settings in the configuration file, are described in Appendix C (p. 117) . Note that depending
on the ./configure options used for compiling, not all options may be available. If you are using
unsupported options, samhain will log warning messages upon startup, including the line number of
the offending line in the configuration file.

11. Remarks on the dnmalloc allocator
As a proactive security measure, since version 2.4.5, samhain ships with dnmalloc (Dnmalloc Site),
a safer allocator that isn't vulnerable by heap buffer overflows and/or double free errors. I.e. with
dnmalloc, it's not possible to exploit such errors to run arbitrary code.

If you want to disable dnmalloc, you can do so at compile time with ./configure --disable-dnmalloc
[more options] .

Unsupported operating systems

The dnmalloc allocator doesn't work on: OpenBSD (problems with pthread internals),
Cygwin (also pthread internals), and 64bit FreeBSD. On 64bit AIX, you need to compile
as a 32bit application, or to forego dnmalloc.

Speed and memory overhead of dnmalloc:

Speed Dnmalloc is as fast, or sometimes faster than, the GNU libc allocator (which
is based on ptmalloc).

Memory overhead The actual memory overhead of dnmalloc is in the range of 20 per cent or less.

On top of that, dnmalloc allocates a huge (128MB/256MB for 32bit/64bit
systems) table on startup. This is basically a non-issue, since this table is only
sparsely used, and hence contributes very little to the "reserved memory", i.e.
the actual resource usage of dnmalloc.

Both 'top' and 'ps' include this table in the 'virtual size' (columns VIRT/VSZ
in top/ps) of an application using dnmalloc, thus giving the incorrect impres-
sion that physical swap storage would be required to back this table, if it's not
resident in RAM (columns RES/RSS in top/ps). In fact, since most parts of
this table are never used, no physical storage (neither RAM nor swap) is ever
reserved for them. Note that this is not true anymore if (on Linux) you've
switched off overcommiting completely (echo 2 > /proc/sys/vm/overcom-
mit_memory).

Reserved memory

"Reserved momory" is the amount of memory that the operating system has reserved
for an application, is backed by physical reasources (RAM or swap), and hence is not
available for other applications. In other words, "reserved momory" is the actual resource
usage of an application.

17

General usage notes

Because of deferred memory allocation, reserved memory can be less than what an ap-
plication has asked for, since memory is only reseved when it is used.

12. Support / Bugs / Problems
If you have problems getting samhain to run, or think that you have encountered a bug, then please
check the FAQ first.

If your problem is not anwered there, you can visit the user forum(which is searchable, by the way)
and ask there for help (recommended for questions of probably general interest), or send email to
<support@la-samhna.de>.

Please remember that a useful problem report should at least include the following three items:

• What did you do?

• What result did you expect?

• What result did you obtain instead?

Please be sure to provide relevant details, such as:

• your operating system, its release version, and the machine (uname -srm).

• your operating system, its release version, and the machine (uname -srm).

• the version of samhain that you are using, and the options that you have supplied to configure ,

• the command line options used to start samhain, and

• the samhainrc runtime configuration file.

• If you think you have encountered a bug, it is usually very helpful if you run samhain in the fore-
ground(i.e. not as daemon) with the command line switch -p debug to get some more information
about the problem.

It would be even more helpful if you first re-compile samhain with configure --enable-debug , and
then run it with the command line switch -p debug (again, not as daemon, but in the foreground).

Please compress the output using gzip , and send it as attachment to <support@la-samh-
na.de>.

12.1. If samhain appears to hang indefinitely
If you have the impression that samhain hangs indefinitely, this could be due to a deadlock caused by
some rare circumstance (it is not possible to fully test all possible configurations of samhain).

The most useful thing to do then is to recompile samhain with --enable-debug=gdb , start it in the
foreground under the control of the gdb debugger, and get a backtrace as soon as it seems to hang:

 bash$ gdb ./samhain
 (gdb) run -t check -p info --foreground --forever
 (samhain output)
 [Ctrl-C]
 (gdb) thread apply all
 (gdb) backtrace

18

Chapter 4. Configuration of logging
facilities

The configuration file for samhain is named samhainrc by default. Also by default, it is placed in
/etc. (Name and location is configurable at compile time). The distribution package comes with a
commented sample configuration file. The layout of the configuration file is described in more details
in Section 1 (p. 117) .

1. General
Events(e.g. unauthorized modifications of files monitored by samhain) will generate messages of
some severity. These messages will be logged to all logging facilities, whose threshold is equal to, or
lower than, the severity of the message.

1.1. Severity levels
The following severity levels are defined:

Level Significance

none Keyword to switch off a looging facility (*).

debug Debugging-level messages.

info Informational message.

notice Normal conditions.

warn Warning conditions.

mark Timestamps.

err Error conditions.

crit Critical conditions.

alert Program startup/normal exit, or fatal error, caus-
ing abnormal program termination.

inet Incoming messages from clients (server only).

(*) the keyword 'none' can only be used as a threshold for logging facilities, to indicate that no messages
shall be logged via that facility.

Most events (e.g. timestamps, internal errors, program startup/exit) have fixed severities. The follow-
ing events have configurable severities: (*) the keyword 'none' can only be used as a threshold for
logging facilities, to indicate that no messages shall be logged via that facility.

• (server only) failure to resolve a client address (section [Misc], option SeverityLookup)

• policy violations (for monitored files)

• access errors for files

• access errors for directories

• obscure file names (with non-printable characters) and/or invalid UIDs/GIDs (no such user/group)

• login/logout events (if samhain is configured to monitor them)

Severity levels for events (see Section 1.1 (p. 19)) are set in the EventSeverity and (for login/logout
events) the Utmp sections of the configuration file.

In the configuration file, these can be set as follows:

19

Configuration of logging facilities

 [EventSeverity]
 #
 # these are policies
 #
 SeverityReadOnly=crit
 SeverityLogFiles=crit
 SeverityGrowingLogs=warn
 SeverityIgnoreNone=crit
 SeverityIgnoreAll=info
 #
 # these are access errors
 #
 SeverityFiles=err
 SeverityDirs=err
 #
 # these are obscure file names
 # and/or invalid UIDs/GIDs (no such user/group)
 #
 SeverityNames=info
 #
 # This is the section for login/logout monitoring
 #
 [Utmp]
 SeverityLogin=notice
 SeverityLogout=notice
 # multiple logins by same user
 SeverityLoginMulti=err

1.2. Classes
Events of related type are grouped into classes. For each logging facility, it is possible to restrict
logging to a subset of these classes (see Section 3 (p. 22)). The available classes are:

Class Significance

EVENT Events to be reported (i.e. policy violations, lo-
gin/logout).

START Startup/stop messages.

STAMP Timestamp (heartbeat) messages.

LOGKEY The key to verify the signed log file.

ERROR Error messages.

OTHER Everything else (e.g. informational messages).

AUD System calls (for debugging).

The aforementioned classes represent a new, simplified classification scheme since version 1.8.2. The
previous scheme (listed below) will still work, and both can be mixed.

Class Significance

AUD System calls.

RUN Normal run messages (e.g. startup, exit, ...)

STAMP Timestamps and alike.

FIL Messages related to file integrity checking.

20

Configuration of logging facilities

Class Significance

TCP Messages from the client/server subsystem.

PANIC Fatal errors, leading to program termination.

ERR Error messages (general).

ENET Error messages (network).

EINPUT Error messages (input, e.g. configuration file).

1.3. Error message customization
It is possible to customize the initial part (the header of messages via the MessageHeader= "for-
mat" directive. Enclosing quotes are only required to protect leading/trailing space, and there is no
need to escape quotes within the format string. The following placeholders are recognized:

%S Severity of the message.

%T Timestamp of the message.

%C Class of the message.

%F Source file where the message originates from.

%L Line number (in the source file) where the message originates from.

%E An error code that may provide additional information in case of internal errors.

In the configuration file, these can be set as follows:

 [Misc]
 #
 # This is the default without XML
 #
 MessageHeader="%S %T "
 #
 # Default for XML-style messages.
 # Note that quotes within the format strings are NOT escaped in any way.
 #
 # MessageHeader="<log sev="%S" tstamp="%T"

2. Available logging facilities
samhain supports the following facilities for logging:

• e-mail — samhain uses built-in SMTP code, rather than an external mailer program. E-mails are
signed to prevent forging.

• syslog — The system logging utility.

• console — If running as daemon, /dev/console is used, otherwise stderr. /dev/console
can be replaced by other devices, including a FIFO.

• log file — Entries are signed to provide tamper-resistance.

• log server — samhain uses TCP/IP with strong authentication and signed and encrypted messages.

• external — samhain can be configured to invoke external programs for logging and/or taking some
action upon certain conditions.

• SQL db — Currently samhain supports MySQL, PostgreSQL, Oracle, and unixODBC.

21

Configuration of logging facilities

• Prelude — samhain can be compiled with support for the Prelude IDS, i.e. it can be used as a
Prelude sensor.

Each of these logging facilities has to be activated by setting an appropriate threshold on the messages
to be logged by this facility.

Note

In addition, some of these facilities require proper settings in the configuration file (see
next sections).

3. Activating logging facilities and filtering
messages

All messages have a severity level (see Section 1.1 (p. 19)) and a class (see Section 1.2 (p. 20)
), with somewhat orthogonal meaning:

The severity ranks messages with respect to their importance. Most events (e.g. timestamps, internal
errors, program startup/exit) have fixed severities. However, as importance sometimes is a matter of
taste, some events have configurable severities (see Section 1 (p. 19)).

Classes refer to the purpose/category of a message. As such, they should (ideally) be useful to exclude
messages that are not interesting in some context (e.g. startup/stop messages may seem useless noise
if samhain is run from cron).

Obviously, as severity is a rank, the most natural way to exclude unwanted messages is to set a thresh-
old. On the other hand, as the message class is a category, the most natural way to exclude messages
is to list those message classes that you want.

Messages are only logged to a log facility if their severity is at least as high as the threshold of that
facility, and their class is one of those wanted (by default: all). Thresholds and class lists can be
specified individually for each facility.

Switching on/off

Most log facilities are off by default, and need to be enabled by setting an appropriate
threshold.

A threshold of none switches off the respective facility.

Logging of client messages by the server

By default, messages received by the server are treated specially, and are always logged
to the logfile, and never to mail or syslog. If you don't like that, use the option UseClien-
tSeverity=yes(section [Misc]).

Thresholds and class lists are set in the Log section of the configuration file. For each threshold option
FacilitySeverity there is also a corresponding option FacilityClass to limit that facility to
messages within a given set of class. The argument must be a list of valid message classes, separated
by space or comma.

Actually, the FacilitySeverity can take a list of severities with optional specifiers '*', '!', or '=',
which are interpreted as 'all', 'excluding', and 'only', respectively. Examples: specifying '*' is equal
to specify 'debug'; specifying '!*' is equal to specifying 'none'; 'info,!crit' is the range from 'info' to
'err' (excluding crit and above); and 'info,!=err' is info and above, but excluding (only) 'err'. This is the
same scheme as used by the Linux syslogd (see man 5 syslogd).

System calls: certain system calls (execve, utime, unlink, dup (+ dup2), chdir, open, kill, exit (+ _exit),
fork, setuid, setgid, pipe) can be logged (only to console and syslog). You can determine the set of

22

Configuration of logging facilities

system calls to log via the option LogCalls= call1, call2, By default, this is off (nothing
is logged). The priority is notice, and the class is AUD.

Example:

 [Log]
 #
 # Threshold for E-mails (none = switched off)
 # MailSeverity=none
 #
 # Threshold for log file
 #
 LogSeverity=err
 LogClass=RUN FIL STAMP
 #
 # Threshold for console
 #
 PrintSeverity=info
 #
 # Threshold for syslog (none = switched off)
 #
 SyslogSeverity=none
 #
 # Threshold for logging to Prelude (none = switched off)
 #
 PreludeSeverity=none
 #
 # Threshold for forwarding to the log server
 #
 ExportSeverity=crit
 #
 # Threshold for invoking an external program
 #
 ExternalSeverity=crit
 #
 # Threshold for logging to a SQL database
 #
 DatabaseSeverity=err
 #
 # System calls to log
 #
 LogCalls=open, kill

4. E-mail
It is possible to define email recipients at compile-time, but it is also possible to define recipients, or
aliases (lists of recipients) in the configuration file. Each recipient (list) definition starts with either:

SetMailAddress= recipient

or:

SetMailAlias= listname: addresslist

Filters and/or a threshold severity for the recipient (list) may follow. The definition of a recipient is
ended (a) explicitely when terminated with the line CloseAddress , or (b) implicitely when another
recipient (list) definition is started.

23

Configuration of logging facilities

Items that can/must be configured are:

Recipients address SetMailAddress= username@hostname

Each address must on a separate line in the configuration file.

Tip

it is recommended to use numerical IP addresses
instead of host names (to avoid DNS lookups).

Recipients address list SetMailAlias= listname: addresslist

Define an alias for a list of (already defined) recipients. The for-
mat is listname":" addresslist, where addresses in addresslist
can be separated by comma, tab, or space. Logging threshold
and filters (see below) can be set for a list as for an individual
recipient, but will take effect only for email that is specifically
targeted at the list (e.g. via a per-queue rule in the logfile mon-
itoring module).

Logging threshold SetAddrSeverity= severity

This defines a logging threshold severity for the last defined
recipient (list). The syntax is the same as for MailSeverity .

MailSeverity and
SetAddrSeverity

The MailSeverity setting in the [Log] section de-
fines an upper bound for all recipients. Messages
not included by the MailSeverity setting will nev-
er be emailed.

NOT Filter SetMailFilterNot= list_of_regexes

Defines a filtering condition for the last defined recipient (list).
If there is no recipient (list) defined yet, it applies to the com-
piled-in recipients.

List items are POSIX regular expressions. As whitespace
(blank or tab) is a valid separator in a list, strings with white-
space must be enclosed in single or double quotes. If a string
begins with a double quote, enclose it in single quotes (and vice
versa).

If used, then NONE of the regular expressions in list can occur
in a message, otherwise it will not be sent by email.

AND Filter SetMailFilterAnd= list

Order of evaluation

AND conditions are evaluated after all NOT con-
ditions.

If used, then ALL strings in list must occur in a message, oth-
erwise it will not be sent by email. The syntax is the same as
for SetMailFilterNot .

24

Configuration of logging facilities

OR Filter SetMailFilterOr= list

Order of evaluation

OR conditions are evaluated after all AND con-
ditions.

If used, then AT LEAST ONE of the strings in list must occur
in a message, otherwise it will not be sent by email. The syntax
is the same as for SetMailFilterNot .

Closing a recipient (list) definition CloseAddress

This explicitely closes the definition of a recipient (list). How-
ever, this is optional syntactic sugar (i.e. not really required),
since recipient (list) definitions are closed implicitely by the
beginning of another recipient (list) definition (i.e. SetMailAd-
dress or SetMailAlias).

Relay host / Mail exchanger SetMailRelay= mail.some_domain.com

You may need this option because some sites don't allow out-
bound e-mail connections from any arbitrary host. If the recip-
ient is offsite, and your site uses a mail relay host to route out-
bound e-mails, you need to specify the relay host.

Maximum interval SetMailTime= 86400

You may want to set a maximum interval between any two con-
secutive e-mails, to be sure that samhain is still 'alive'.

Maximum pending SetMailNum= 10

Messages can be queued to send several messages in one e-
mail. You may want to set the the maximum number of mes-
sages to queue. (Note: messages of highest priority (alert) are
always sent immediately. At most 128 messages can be queued.

Multiple recipients MailSingle= yes/no

If there are multiple recipients, whether to send a single mail
with the recipient list, or send multiple mails. If all recipients
are on same domain, a single mail may suffice, otherwise it
depends on whether the mail server supports forwarding (for
security, most don't).

Subject line MailSubject= string

Here, string may contain the placeholders %T, %H, %S, and/
or %M that will get replaced by the time, hostname, message
severity and message text, respectively. The default subject line
is equivalent to "%T %H". This option may be useful if you
want to send emails to an email-to-sms gateway.

Sender SetMailSender= string

Here, string is the address that is inserted in the From: field. If
a name without domain is given (i.e. without '@xyz.tld'), the
FQDN of the local host will be added automatically.

SMTP port SetMailPort= port_number

25

Configuration of logging facilities

This option allows to specify a custom port for SMTP (the de-
fault is 25).

Example:

 [Misc]
 #
 # Do not send messages about added files, and startup messages.
 # We have no recipient defined yet, thus this applies to
 # compiled-in recipients only (if there are any).
 #
 SetMailFilterNot = 'POLICY ADDED', START
 #
 # E-mail recipient (offsite in this case).
 #
 SetMailAddress=username@host.some_domain.com
 SetMailFilterNot = LOGKEY
 CloseAddress
 #
 # Need a relay host for outgoing mail.
 #
 SetMailRelay=relay.mydomain.com
 #
 # Number of pending mails.
 #
 SetMailNum=10
 #
 # Maximum time between e-mails.
 # Want a message every day, just to be sure that the
 # program still runs.
 #
 SetMailTime=86400
 #
 # Do not send messages about added files, and startup messages
 #
 SetMailFilterNot = 'POLICY ADDED', START
 #
 # To all recipients in a single mail.
 MailSingle=yes

4.1. E-mail reports and their integrity
The subject line contains timestamp and local hostname, which are repeated in the message body.
samhain uses its own built-in SMTP code rather than the system mailer, because in case of temporary
connection failures, the system mailer (e.g. sendmail) would queue the message on disk, where it may
become visible to unauthorized persons.

During temporary connection failures, messages are stored in memory. The maximum number of
stored messages is 128. samhain will re-try to mail every hour for at most 48 hours. In conformance
with RFC 821, samhain will keep the responsibility for the message delivery until the recipient's mail
server has confirmed receipt of the e-mail (except that, as noted above, after 48 hours it will assume
a permanent connection failure, i.e. e-mailing will be switched off).

The body of the mail may consist of several messages that were pending on the internal queue (see
Section 2 (p. 21)), followed by a signature that is computed from the message and a key. The key
is initialized with a random number, and for each e-mail iterated by a hash chain.

26

Configuration of logging facilities

The initial key is revealed in the first email sent (obviously, you have to believe that this first e-mail is
authentic). This initial key is not transmitted in cleartext, but encrypted with a one-time pad (Section 2
(p. 106)).

The signature is followed by a unique identification string. This is used to identify separate audit trails
(here, a trail is a sequence of e-mails from the same run of samhain), and to enumerate individual
e-mails within a trail.

The mail thus looks like:

 -----BEGIN MESSAGE-----
 first message
 second message
 ...
 -----BEGIN SIGNATURE-----
 signature
 ID TRAIL_ID:hostname
 -----END MESSAGE-----

Integrity verification

To verify the integrity of an e-mail audit trail, a convenience function is provided:

samhain -M /mailbox/file/path

The mailbox file may contain multiple and/or overlapping audit trails from different runs
of samhain and/or different clients (hosts).

CAVEATS

Verification will fail, if the compiled-in key of the verifying executable is different from
the one that generated the message(s) (see Section 2 (p. 106)).

If you use a pre-compiled executable from some binary distribution, be sure to read
Section 2 (p. 106) carefully.

5. Log file
Trusted users TrustedUser= username

If some element in the path to the log file is writeable by some-
one else than root or the effective user of the process, you have
to include that user in the list of trusted users(unless their UIDs
are already compiled in).

Separate log files for clients UseSeparateLogs= yes/no

Only relevant on the server. Use a separate log file for (reports
from) each client. The root name of these log files will be the
same as the main log file, with the client name appended.

5.1. The log file and its integrity

The log file is named samhain_log by default, and placed into /var/log by default (name and
location can be configured at compile time). If samhain has been compiled with the ./configure --
enable-xml-log option, it will be written in XML format.

27

Configuration of logging facilities

Note

If you have compiled for stealth (Chapter 10 (p. 94)), you won't see much, because
if obfuscated, then both a 'normal' and an XML logfile look, well ... obfuscated. Use
samhain -jL /path/to/logfile to view the logfile.

The log file is created if it does not exist, and locked by creating a lock file, which has the same path as
the logfile, with a ".lock" appended. The lock file holds the PID of the process, which allows samhain
to recognize and remove a stale lock if there is no process with that PID.

On the log server, it is possible to use separate log files for individual clients. This can be enabled with
UseSeparateLogs= yes/no in the Misc section of the server configuration file. No locking will be
performed for client files (only one instance of the server can listen on the TCP port, thus there will
be no concurrent access).

The directory where the logfile and its lock file are located must be writeable only by trusted users
(see Section 10.1 (p. 9)). This requirement refers to the complete path, i.e. all directories therein. By
default, only root and the effective user of the process are trusted.

Audit trails (sequences of messages from individual runs of samhain) in the log file start with a [SOF]
marker. Each message is followed by a signature, that is formed by hashing the message with a key.

The first key is generated at random, and sent by e-mail, encrypted with a one-time pad as described
in the previous section on e-mail. Further keys are generated by a hash chain (i.e. the key is hashed to
generate the next key). Thus, only by knowing the initial key the integrity of the log file can be assured.

The mail with the key looks like:

 -----BEGIN MESSAGE-----
 message
 -----BEGIN LOGKEY-----
 Key(48 chars)[timestamp]
 -----BEGIN SIGNATURE-----
 signature
 ID TRAIL_ID:hostname
 -----END MESSAGE-----

Integrity verification

To verify the log file's integrity, a convenience function is provided:

samhain -L /log/file/path

When encountering the start of an audit trail, you will then be asked for the key (as sent
to you by e-mail). You can then: (i) hit return to skip signature verification, (ii) enter
the key (without the appended timestamp), or (iii) enter the path to a file that contains
the key (e.g. the mail box).

If you use option (iii), the path must be an absolute path (starting with a '/', not longer
than 48 chars. For each audit trail, the file must contain a two-line block with the -----
BEGIN LOGKEY----- line followed by the line (Key(48 chars)[timestamp]) from the
mail. Additional lines before/after any such two-line block are ignored (in particular, if
you collect all e-mails from samhain in a mailbox file, you can simply specify the path
to that mailbox file).

28

Configuration of logging facilities

CAVEATS

Verification will fail, if the compiled-in key of the verifying executable is different from
the one that generated the message(s) (see Section 2 (p. 106)).

If you use a pre-compiled executable from some binary distribution, be sure to read
Section 2 (p. 106) carefully.

6. Log server
Server address SetLogServer= my.server.address

You have to specify the server address, unless it is already compiled
in. It is possible to specify a second server that will be used as back-
up.

Note

If you want to store the configuration file on the serv-
er, the server address must be compiled in.

Throughput throttling SetThrottle= milliseconds

An option to throttle the throughput when downloading the database
from the server. The allowed maximum of 1000 msec throttles to
about 64 kB/sec, less throttle means higher throughput.

6.1. Details
During temporary connection failures, messages are stored in a FIFO queue in memory. The maximum
number of stored messages is 128. After a connection failure, samhain will make the next attempt only
after a deadtime that starts with 1 sec and doubles after each unsuccessful attempt (max is 2048 sec). A
re-connection attempt is actually only made for the next message after the deadtime -- you should send
timestamps (i.e. set the threshold to mark) to ensure re-connection attempts for failed connections.

It is possible to specify two log servers in the client configuration file. The first one will be used by
default (primary), and the second one as fallback in case of a connection failure with the primary log
server.

7. External facilities
samhain can invoke external scripts/programs for logging (i.e. to implement support for pagers etc.).
This is explained in detail in Chapter 7 (p. 83) .

8. Console
Up to two console devices are supported, both of which may also be named pipes. If running as dae-
mon, samhain will use /dev/console for output, otherwise stdout. On Linux, _PATH_CONSOLE
will be used instead of /dev/console, if it is defined in the file /usr/include/paths.h.

You can override this at compile time, or in the [Misc] section of the configuration file with the
SetConsole= device option. Up to two console devices are supported, both of which may also be
named pipes (use the SetConsole option twice to set both devices).

Switching off

Invariably, some users set SetConsole= /dev/null to switch off console logging.
This is highly ineffective, as the device will be opened, and the message written to it, for

29

Configuration of logging facilities

every log message. The correct way is to use PrintSeverity= none in the [Log] section
of the configuration file (or the command line switch '-p none').

9. Prelude
REQUIREMENTS

This facility requires that you have compiled with the --with-prelude option to include
support for prelude. Of course you need the libprelude client library for this to work.

Note

The following configuration options can only be used. They should be placed the [Misc]
section of the configuration file, if you use them. The 'PreludeMapTo...' options do not
affect in any way whether a message is reported by samhain to the prelude manager (for
this there is 'PreludeSeverity' in the [Log] section); they only affect the 'Impact severity'
shown on the prelude side.

PreludeProfile PreludeProfile= profile_name

Specify the profile to use. The default is 'samhain'.

PreludeMapToInfo PreludeMapToInfo= list of samhain severities

The severities that should be mapped to impact severity 'info' for prelude.
(default: none).

PreludeMapToLow PreludeMapToInfo= list of samhain severities

The severities that should be mapped to impact severity 'low' for prelude.
(default: debug, info).

PreludeMapToMedium PreludeMapToMedium= list of samhain severities

The severities that should be mapped to impact severity 'medium' for
prelude. (default: notice, warn, err).

PreludeMapToHigh PreludeMapToHigh= list of samhain severities

The severities that should be mapped to impact severity 'high' for pre-
lude. (default: crit, alert).

9.1. Prelude-specific command-line options

The following prelude-specific command-line options are accepted:

1. --prelude Prelude generic options are following. This option must be given before the following
options are used.

2. --profile <arg> Profile to use for this analyzer

3. --heartbeat-interval <arg> Number of seconds between two heartbeats

4. --server-addr <arg> Address where this sensor should report to (addr:port)

5. --analyzer-name <arg> Name for this analyzer

30

Configuration of logging facilities

9.2. Registering to a Prelude manager

Sensor name/profile

The default sensor name/profile is 'samhain'. However, version 2.0.6 of samhain still had
'Samhain' For versions of samhain later than 2.0.6, there is an option PreludeProfile=
profile (in the [Misc] section) to set a user-defined name/profile.

In order to register samhain as a Prelude sensor, you need to run on the sensor host and on the manager
host the prelude-admin command.

 sensor # prelude-admin register samhain "idmef:w admin:r" <manager host> \
 --uid=prelude --gid=prelude

 You now need to start "prelude-admin" registration-server on 127.0.0.1:
 example: "prelude-admin registration-server prelude-manager"

 Enter the one-shot password provided on 127.0.0.1:

 manager # prelude-admin registration-server prelude-manager

 The "76g4h8au" password will be requested by "prelude-admin register"
 in order to connect. Please remove the quotes before using it.

 Generating 1024 bits Diffie-Hellman key for anonymous authentication...
 Waiting for peers install request on 0.0.0.0:5553...
 Waiting for peers install request on :::5553...

You now have to type in the one-shot password generated on "manager" at the password prompt on
"sensor", (twice, for confirmation). Then on "manager" you will be asked to approve the registration.
Type 'y', and you are finished.

The configuration file for the samhain sensor is /etc/prelude/profile/samhain/config

10. Using samhain with nagios
After running ./configure , you will find the script check_samhain.pl in the subdirectory
scripts/ of the samhain distribution, which you can copy to the nagios libexec/ directory.
Before doing so, you may want to edit the script to set the correct path to the libexec/ directory
in the following line:

 use lib "/usr/local/nagios/libexec";

The following recipe to use this script has been kindly provided by kiarna:

Nagios runs as user 'nagios'. However, in order to check the filesystem, you typically want to run
samhain as 'root'. You can use sudo to fix this problem. In your /etc/sudoers file, add the line:

 nagios ALL = NOPASSWD:/path/to/check_samhain

31

Configuration of logging facilities

Next, add the service to the nagios file objects/commands.cfg:

 # 'check_samhain' command definition
 define command{
 command_name check_samhain
 command_line /usr/bin/sudo -u root $USER1$/check_samhain -t 100
 }

Another option would be to install the check_samhain script with SUID permissions instead of using
sudo (this requires that the suidperl package is installed and that samhain has been compiled with ./
configure --enable-suid ...

 # 'check_samhain' command definition
 define command{
 command_name check_samhain
 command_line $USER1$/check_samhain -t 100
 }

Checking the filesystem may take some time, so you may want to increase the nagios plugin timeout
by changing the following line in nagios.cfg from 60 to 600:

 service_check_timeout=600

Then add the service to the appropriate section in the nagios service.cfg file.

11. Syslog
samhain will translate its own severities into syslog priorities as follows:

Severity Syslog priority

debug LOG_DEBUG

info LOG_INFO

notice LOG_NOTICE

warn LOG_WARNING

mark LOG_ERR

err LOG_ERR

crit LOG_CRIT

alert LOG_ALERT

Messages larger than 959 chars will be split into several messages. By default, samhain will use the
identity 'samhain', the syslog facility LOG_AUTHPRIV, and will log its PID (process identification
number) in addition to the message.

The syslog facility can be modified via the directive SyslogFacility= LOG_xxx in the Misc section
of the configuration file.

The syslog priority to be used for heartbeat messages (timestamps) can be selected with the direc-
tive SyslogMapStampTo= LOG_xxx in the Misc section of the configuration file. The default is
LOG_ERR.

32

Configuration of logging facilities

12. SQL Database
Requirements

To build an executable with support for logging to a SQL database, the relevant devel-
opment packages (e.g. libmysqlclient-dev on Ubuntu for MySQL) need to be installed
in the build machine.

This facility requires that you have compiled with the --enable-xml-log option to format
log messages in XML (also for the client, even if you do SQL logging on the server),
and of course with the --with-database=XXX option (where 'XXX' may be any of: mysql,
postgresql, oracle, or odbc).

If you are using the MessageHeader directive in the configuration file for a user-defined
message header, make sure that the log messages are still valid XML, and that all the
default entities are still present.

Currently MySQL, PostgreSQL, and Oracle are implemented and tested. Support for unixODBC is
implemented, but not fully tested. If the header file 'mysql.h' ('libpq-fe.h') is not found during compi-
lation ('mysql.h: No such file or directory'), you can use the option --with-cflags=-I/dir/where/mysql.h/
is. If the library libmysqlclient.a (libpq.a) is not found ('/usr/bin/ld: cannot find -lmysqlclient'), you
can use the option --with-libs=-L/dir/where/libmysqlclient.a/is.

Note

The --enable-static option to compile a static executable is incompatible with Post-
greSQL and MySQL.

By default, the database server is assumed to be on localhost, the db name is 'samhain', the db table
is 'log', and inserting is possible for any user without password. To create the database/table with
the required columns, the distribution includes the scripts 'samhain.mysql.init', 'samhain.postgres.init',
and 'samhain.oracle.init'. E.g., for PostgreSQL you would setup the database like:

 $ su postgres
 $ createdb samhain
 $ createuser -P samhain
 Enter password for new role:
 Enter it again:
 $ psql -d samhain < samhain.postgres.init
 $ exit

... and for MySQL:

 $ mysql -p -u root < samhain.mysql.init
 $ mysql -p -u root
 > CREATE USER 'samhain'@'localhost' IDENTIFIED BY 'password';
 > GRANT SELECT,INSERT ON samhain.log TO 'samhain'@'localhost';
 > FLUSH PRIVILEGES;

Permissions

The PostgreSQL init script will grant INSERT permission only to a user 'samhain'. Please
take note that for PostgreSQL, inserting also requires SELECT and UPDATE permission
for the sequence 'log_log_index_seq' (see bottom of init script). The MySQL init script
will create the database, but not the user, and will not grant any permissions.

33

Configuration of logging facilities

As with all logging facilities, logging to the SQL database must be enabled in the configuration file
by setting an appropriate threshold, e.g.:

 [Log]
 DatabaseSeverity=warn

In the Database section of the configuration file, you can modify the defaults via the following di-
rectives:

 [Database]
 SetDBName=db_name
 SetDBTable=db_table
 SetDBHost=db_host
 SetDBUser=db_user
 SetDBPassword=db_password
 UsePersistent=yes/no

The default is to use a persistent connection to the database. You can change this with UsePersisten-
t=no

Note re. PostgreSQL

For PostgreSQL, db_host must be a numerical IP address.

When logging client messages, yule will wrap them into a server <log sev=''RCVT'' tstamp=[...] > [...]
</log> message. The parser will then create a separate database entry for this server timestamp. If you
don't like this, you can use the option SetDBServerTstamp= false .

The table field 'log_ref' is NULL for client messages, 0 for server messages, and equal to 'log_index'
of the client message for the aforementioned server timestamp of a client message.

Log records can be tagged via a special (indexed) table field 'log_hash', which is the MD5 checksum
of (the concatenation of) any fields registered with AddToDBHash= field . The beltane web-based
console can use these tags to filter messages. There is no default set of fields over which the MD5
hash is computed, so by default the tag is equal for all rows.

Tip

For security, you may want to set up a user/password for insertion into the db. However,
as the password is in cleartext in the config file (and the connection to the db server is
not encrypted), for remote logging this facility is less secure than samhain's own client/
server system (it is recommended to run the db server on the log host and have the log
server, i.e. yule, log to the db).

12.1. Upgrade to samhain 2.3
Version 2.3 of Samhain supports checking of SELinux attributes and/or Posix ACLs. For backward
compatibility, this is off by default. If you upgrade Samhain and enable this option, you need to update
the database scheme as follows:

Mysql:

 ALTER TABLE samhain.log ADD COLUMN acl_old BLOB;

34

Configuration of logging facilities

 ALTER TABLE samhain.log ADD COLUMN acl_new BLOB;

PostgreSQL:

 ALTER TABLE samhain.log ADD COLUMN acl_old TEXT;
 ALTER TABLE samhain.log ADD COLUMN acl_new TEXT;

Oracle:

 ALTER TABLE samhain.log ADD acl_old VARCHAR2(4000);
 ALTER TABLE samhain.log ADD acl_new VARCHAR2(4000);
 DROP TRIGGER trigger_on_log;

12.2. Upgrade to samhain 2.4.4
Version 2.4.4 of Samhain supports storing the content of files. If you have created your Oracle database
using the database scheme from a previous version, you need to change at least the 'link_old' and
'link_new' columns from VARCHAR2 to CLOB:

 ALTER TABLE samhain.log ADD tmp_name CLOB;
 UPDATE samhain.log SET tmp_name=link_old;
 ALTER TABLE samhain.log DROP COLUMN link_old;
 ALTER TABLE samhain.log RENAME COLUMN tmp_name to link_old;

 ALTER TABLE samhain.log ADD tmp_name CLOB;
 UPDATE samhain.log SET tmp_name=link_new;
 ALTER TABLE samhain.log DROP COLUMN link_new;
 ALTER TABLE samhain.log RENAME COLUMN tmp_name to link_new;

12.3. Upgrade to samhain 2.8.0+
As of version 2.8.0, Samhain supports IPv6 now, which means that the size of the 'ip' column in the
database must be increased from VARCHAR(16) to VARCHAR(46).

Mysql:

 ALTER TABLE samhain.log MODIFY ip VARCHAR(46);

PostgreSQL:

 ALTER TABLE samhain.log ALTER COLUMN ip TYPE VARCHAR(46);

Oracle:

 ALTER TABLE samhain.log MODIFY ip VARCHAR(46);

35

Configuration of logging facilities

12.4. Upgrade to samhain 4.0
As of version 4.0, Samhain optionally logs the checking policy for a file if the option ReportCheckflags
is set in the configuration file. If you enable this option, you need to update your database scheme
as follows:

Mysql:

 ALTER TABLE samhain.log ADD COLUMN checkflags_old BIGINT UNSIGNED;
 ALTER TABLE samhain.log ADD COLUMN checkflags_new BIGINT UNSIGNED;

PostgreSQL:

 ALTER TABLE samhain.log ADD COLUMN checkflags_old NUMERIC(20);
 ALTER TABLE samhain.log ADD COLUMN checkflags_new NUMERIC(20);

Oracle:

 ALTER TABLE samhain.log ADD checkflags_old NUMBER(20);
 ALTER TABLE samhain.log ADD checkflags_new NUMBER(20);

12.5. MySQL configuration details
To pass the location of the MySQL Unix domain socket (for connections on localhost) to samhain, you
can use the environment variable MYSQL_UNIX_PORT (the value must be the path of the socket).

Alternatively, as of samhain version 2.2, you can set options for the group "samhain" in my.cnf. See
the MySQL manual for the proper syntax of the my.cnf file, as well as for possible options.

Note

It is not possible for an application (like e.g. samhain) to detect whether my.cnf is
readable (because the application does not know where the file resides). Interesting errors
may result...

36

Chapter 5. Configuring samhain, the
host integrity monitor

The samhain file monitor checks the integrity of files by comparing them against a database of file
signatures, and notify the user of inconsistencies. The level of logging is configurable, and several
logging facilities are provided.

samhain can be used as a client that forwards messages to the server part (yule) of the samhain system,
or as a standalone program (for single hosts).

samhain can be run as a background process (i.e. a daemon), or it can be started at regular intervals
by cron.

Tip

It is recommended to run samhain as daemon, because

• samhain can remember file changes, thus while running as a a daemon, it will not
bother you with repetitive messages about the same problem, and

• using cron opens up a security hole, because between consecutive invocations the
executable could get modified or replaced by a rogue program.

1. Usage overview
To use samhain, the following steps must be followed:

1. The configuration file must be prepared (Section 4 (p. 38) , Section 1 (p. 19) , and Section 11
(p. 53) for details).

• All files and directories that you want to monitor must be listed. Wildcard patterns are supported.

• The policies for monitoring them (i.e. which modifications are allowed and which not) must be
chosen.

• Optionally, the severity of a policy violation can be selected.

• The logging facilities must be chosen, and the threshold level of logging should be defined To
activate a logging facility, its threshold level must be different from none.

• Eventually, the address of the e-mail recepient and/or the IP address of the log server must be
given.

2. The database must be initialized. If it already exists, it should be deleted (samhain will not over-
write, but append), or update instead of init should be used:

samhain -t init|update

3. Start samhain in check mode. Either select this mode in the configuration file, or use the command
line option:

samhain -t check

To run samhain as a background process, use the command line option

samhain -D -t check

37

Configuring samhain, the
host integrity monitor

2. Available checksum functions
A cryptographic hash function is a one-way function H(foo) such that it is easy to compute H(foo)
from foo, but infeasible to compute foo from H(foo) , or to find bar such that H(bar) = H(foo)
(which would allow to replace foo with bar without changing the hash function).

One common usage of a such a hash function is the computation of checksums of files, such that any
modification of a file can be noticed, as its checksum will change.

For computing checksums of files, and also for some other purposes, samhain uses the TIGER hash
function developed by Ross Anderson and Eli Biham. The output of this function is 192 bits long,
and the function can be implemented efficiently on 32-bit and 64-bit machines. Technical details can
be found at this page.

As of version 1.2.10, also the MD5 and SHA-1 hash functions are available. (You need to set the option
DigestAlgo=MD5 or DigestAlgo=SHA1 in the config file to enable this). Note that MD5 is somewhat
faster, but because of security concerns it is not recommended anymore for new applications.

As of version 3.1.0, also the SHA2-256 hash function is available. (You need to set the option Di-
gestAlgo=SHA256 in the config file to enable this).

3. File signatures
samhain works by generating a database of file signatures, and later comparing file against that data-
base to recognize file modifications and/or added/deleted files.

File signatures include:

• a 192-bit cryptographic checksum computed using the TIGER hash algorithm (alternatively SHA-1,
MD5, or SHA2-256 can be used),

• the inode of the file,

• the type of the file,

• owner and group,

• access permissions,

• on Linux only: flags of the ext2 file system (see man chattr),

• the timestamps of the file,

• the file size,

• the number of hard links,

• minor and major device number (devices only)

• and the name of the linked file (if the file is a symbolic link).

Depending on the policy chosen for a particular file, only a subset of these may be checked for mod-
ifications (see Section 4.1 (p. 39)), but usually all these informations are collected.

4. Defining file check policies: what, and how,
to monitor

This section explains how to specify in the configuration file, which files or directories should be
monitored, and which monitoring policy should be used.

38

Configuring samhain, the
host integrity monitor

4.1. Monitoring policies
samhain offers several pre-defined monitoring policies. Each of these policies has its own section in
the configuration file. Placing a file in one of these sections will select the respective policy for that file.

The available policies (section headings) are:

ReadOnly All modifications except access times will be reported for these files.

Checked: owner, group, permissions, file type, device number, hardlinks,
links, inode, checksum, size, mtime, ctime.

LogFiles Modifications of timestamps, file size, and signature will be ignored.

Checked: owner, group, permissions, file type, device number, hardlinks,
links, inode.

GrowingLogFiles Modifications of timestamps, and signature will be ignored. Modification of
the file size will only be ignored if the file size has increased.

Checked: owner, group, permissions, file type, device number, hardlinks,
links, inode, size >= previous_size, checksum(file start up to previous size)
equals previous checksum.

If the size has shrunk (e.g. because of log rotation), samhain will look for a
file with the same inode as before and check whether it has a size >= previ-
ous_size, and checksum(file start up to previous size) equals previous check-
sum. No report will be issued if this check succeeds. Thus log rotation will
be handled gracefully as long as the inode is kept (i.e. the old file is moved
rather than copied) and the first rotated file is not compressed (the logrotate
tool can be told to compress only after the second cycle, and on Debian this
seems to be standard anyway).

Attributes Only modifications of ownership, access permissions, and device number
will be checked.

Checked: owner, group, permissions, file type, device number.

IgnoreAll No modifications will be reported. However, the existence of the specified
file or directory will still be checked.

IgnoreNone All modifications, including access time, but excluding ctime, will be report-
ed - checking atime and ctime would require to play with the system clock.

Checked: owner, group, permissions, file type, device number, hardlinks,
links, inode, checksum, size, mtime, atime.

User0 Initialized to: report all modifications.

User1 Initialized to: report all modifications.

User2 Initialized to: report all modifications.

User3 Initialized to: report all modifications.

User4 Initialized to: report all modifications.

Prelink Modifications of timestamps, size, and inode will be ignored Checksums will
be verified by calling /usr/sbin/prelink --verify . This policy is intended for
verification of prelinked executables/libraries and/or directories containing
such files. For details and further configuration options see Section 4.8 (p.
45) .

39

Configuring samhain, the
host integrity monitor

Checked: owner, group, permissions, file type, device number, hardlinks,
links, checksum.

Note

Each policy can be modified in the config file section Misc with entries like Redef-
ReadOnly= +XXX[,...] or RedefReadOnly= -XXX[,...] to add (+XXX) or re-
move (-XXX) a (a comma-separated list of) tests XXX, where XXX can be any of CHK
(checksum), TXT (store file content in database), LNK (link), HLN (hardlink), INO (in-
ode), USR (user), GRP (group), MTM (mtime), ATM (atime), CTM (ctime), SIZ (size),
RDEV (device numbers), MOD (file mode), PRE (Linux; prelinked binary), SGROW
(file size is allowed to grow), and/or AUDIT (Linux; report who changed the file)

This must come before any file policies are used in the config file.

4.2. File/directory specification
Entries for files have the following syntax:

file= /full/path/to/the/file

Entries for directories have the following syntax:

dir= [recursion depth]/full/path/to/the/directory

The specification of a (numerical) recursion depth is optional (see Section 4.5 (p. 43)). (Do not
put the recursion depth in brackets — they just indicate that this is an optional argument!).

Wildcard patterns ('*', '?', '[...]') as in shell globbing are supported for paths. The leading '/' is manda-
tory. Since version 2.7.1, it is allowed to enclose the value of the directive (i.e. the path for files, the
optional recursion depth and the path for directories) within matching single or double quotes, which
allows to have trailing blanks (note: it is not neccessary to escape quotes in between - the algorithm
does not scan forward to find the matching quote, rather it uses the last character). Also since version
2.7.1, C quoting style is supported ('\a' [bell], '\b' [backspace], '\f' [form feed], '\n' [newline], '\r' [car-
riage return], '\t' [horizontal tab], '\v' [vertical tab], '\\' [backslash], '\'' [single quote], '\"' [double quote],
'\nnn' [dree digit octal value], \xNN' [two digit hexadecimal value]). Example:

 [ReadOnly]
 # valid examples
 dir = /u01/oracle/archive00
 dir = 7/u01/oracle/archive02
 dir = "7/u01/oracle/archive03 "
 dir = "7/u01/oracle/archi"ve"
 dir = /u01/oracle/archive\v04
 dir = /u01/oracle/archive\\04
 dir = /u01/oracle/archive\076
 file = '/u01/oracle/archive\x0a'

 # valid (no quote at start, thus quote at end
 # is considered part of filename)
 file = /u01/oracle/archive_0"

 #invalid (no matching quote at end)
 file = "/u01/oracle/archive_0

 #invalid (\03 is bad, must be 3 digits [octal]
 # or \x03 for hexadecimal)

40

Configuring samhain, the
host integrity monitor

 file = /u01/oracle/archive_\03

 #invalid (\g is undefined escape sequence)
 file = /u01/oracle/archive_\g

Note on directories

A directory is (a) a collection of files, with (b) a directory special file where a listing
of all files in the directories is kept. This directory special file will be modified in case
of a file addition, removal, or renaming. Depending on the chosen policy, samhain will
report on such modifications of the directory special file.

The addition and/or deletion of files from a directory modifies the directory special file
(mtime/ctime). The addition/deletion of subdirectories will also modify the number of
hardlinks of the directory special file. A modification of a file may modify a directory
special file (mtime/ctime), if this modification is done by first creating a temporary file,
followed by renaming this temporary file to the original one.

4.2.1. Rules

1. For the file check, samhain does not follow symlinks. If the argument for a file=... directive is a
symlink, then the symlink itself is checked, not the location it points to.

2. The argument for a dir=... directive must be a directory. Using a symlink to a directory as argument
is incorrect.

3. Precedence is given to the most specific location in the filesystem regardless of the order listed in
the config file. I.e.,

• a policy for a specific file overrides the policy for its directory

• a policy for a subdirectory overrides the policy for its parent directory

• if a directory or file path are explicitly listed twice in two different policy sections, Samhain
will print a warning and honor only the first stanza processed. "First matching rule wins." Note
however that it is perfectly ok to list a directory both as file=/path and dir=/path (see next rules).

4. Checking a directory with dir=... will check both the content of the directory as well as the directory
special file itself, honoring a local and global recursion depth, giving local preference.

5. Using a directory as argument for both a file=... and a dir=... directive will have the effect that

• the file=... directive will override the dir=... directive for the directory special file itself,

• while the dir=... directive remains in effect for the directory content.

6. The presence of a file= /parent/subdir , which is more specific of a path entry than that of the
parent directory in another policy section with a "deeper" recursion depth as dir= N/parent will
not prevent Samhain from descending into /parent/subdir and applying the higher level
directory with the "deeper" recursion policy to the contents of /parent/subdir The more-
specific rule will only apply to the directory special file and does not "truncate" the higher level
policy in any way.

7. To determine if you config file syntax is working as expected, increase the verbosity of debugging
when running samhain with "-t init" using "-p info" or even "-p debug".

Example 1: If you only want to check files in a directory, but not the directory inode itself, use:

41

Configuring samhain, the
host integrity monitor

 [ReadOnly]
 dir = /u01/oracle/archive00
 [IgnoreAll]
 file = /u01/oracle/archive00

 # Note: /u01/oracle/archive00/archive01.dbf -> archive99.dbf *should* be
 # mounted in the DB as a read-only tablespace and should never be
 # changed, however, the DBA thinks he's God and does not need to consult
 # with the Admin, so he may be adding new, deleting, or renaming the
 # DBFs using SQLPlus without consulting with the admin, so tell me about
 # changes to the files inside that we know about at Samhain INIT but
 # such as when he adds a file.

Example 2: If you want to monitor a directory, but not the dynamic contents inside it:

 [Attributes]
 file = /var/spool/mqueue
 file = /tmp
 [IgnoreAll]
 dir=-1/var/spool/mqueue
 dir=-1/tmp

Example 3: If you want to monitor a directory special file, while ensuring no files within are removed
but not the actual attributes of those files:

 [Attributes]
 file = /root
 [IgnoreAll]
 dir=0/root

Thanks to Brian A. Seklecki for his effort to clarify these rules and provide examples.

4.3. Suppress messages about new/deleted/modified
files

If you want to suppress messages about the creation of certain files (e.g. rotated log files), you can use
the options IgnoreAdded=/fullpath/with_some_regex_inside and/or IgnoreMissing=/
fullpath/with_some_regex_inside (to be placed in the [Misc] section of the configuration
files. If you want to add more regular expressions, you can use these options multiple times. Since
transient files might get modified during their lifetime, there is also the option IgnoreModified=/
fullpath/with_some_regex_inside

Note

The argument to IgnoreAdded , IgnoreMissing , and IgnoreModified must be a regular
expression that matches the full path. In particular, it has to start with a forward slash..
To test your regex before putting in samhain, you do something like this:

 # This regex matches all files added by logrotate
 # (e.g: messages.1 or messages.2.gz, etc.)
 cd /var/log
 for file in *; do

42

Configuring samhain, the
host integrity monitor

 echo $file| \
 egrep "(cron|messages|rpmpkgs|secure|up2date|wmtp)\.[0-9](\.gz)?$";
 done

Once it's work this way, you can add it to your samhainrc file, but don't forget to add
the full path. e.g:

 IgnoreAdded = your_tested_regex

This tip has been provided by jim at aegis hyphen corp dot org.

Alternative

If a directory is added to [Attributes] as a file=/dir, then only the directory special file is
monitored for permissions/ownership. The advantage is that additions/removals of files
to that subdirectory can happen without recourse, but the integrity of that directory is
defended. Assuming the administrator doesn't want to get granular level of detail.

Good for such directories as: /var/mail /var/cron/tabs /var/tmp /tmp

This tip has been provided by Brian A. Seklecki

4.4. Dynamic database update (modified/disap-
peared/new files)

samhain reads the file signature database at startup and creates an in-memory copy. This in-memory
copy is then dynamically updated to reflect changes in the file system.

I.e. for each modified/disappeared/new file you will receive an alarm, then the in-memory copy of the
file signature database is updated, and you will only receive another alarm for that file if it is modified
again (or disappears/appears again).

Note that the on-disk file signature database is not updated (if you have signed it, the daemon could
not do that anyway). However, as long as the machine is not rebooted, there should be no need to
update the on-disk file signature database.

If files disappear after initialization, you will get an error message with the severity specified for file
access errors (except if the file is placed under the IgnoreAll policy, in which case a message of
SeverityIgnoreAll— see Section 1.1 (p. 19) — is generated).

If new files appear in a monitored directory after initialization, you will get an error message with the
severity specified for that directory's file policy (except if the file is placed under the IgnoreAll policy,
in which case a message of SeverityIgnoreAll— see Section 1.1 (p. 19) — is generated).

The special treatment of files under the IgnoreAll policy allows to handle cases where a file might be
deleted and/or recreated by the system more or less frequently.

4.5. Recursion depth(s)
Directories can be monitored up to a maximum recursion depth of 99 (i.e. 99 levels of subdirectories.
The recursion depth actually used is defined in the following order of priority:

1. The recursion depth specified for that individual directory (Section 4 (p. 38)). As a special
case, for directories with the policy IgnoreAll, the recursion depth should be set to 0, if you want
to monitor (the existence of) the files within that directory, but to -1, if you do not want samhain
to look into that directory.

43

Configuring samhain, the
host integrity monitor

2. The global default recursion depth specified in the configuration file. This is done in the configu-
ration file section Misc with the entry SetRecursionLevel= number

3. The default recursion depth, which is zero.

4.6. Hardlink check
As of version 1.8.4, samhain will by default compare the number of hardlinks of a directory to the
number of its subdirectories (including "." and ".."). Normally, these numbers should be equal. The
idea here is that a (kernel) rootkit may hide a directory, but fail to "fix" the parent directory hardlink
count (actually, I am not aware of any kernel rootkit that would care to fix the hardlink count of the
parent directory). This is an experimental feature; if there are any problems, it can be disabled with
the option UseHardlinkCheck= no in the [Misc] section of the configuration file.

Errors will be reported at the same severity as directory access errors option SeverityDirs= sever-
ity in section [EventSeverity]).

MacOS X

This feature is not supported on MacOS X (because the resource fork is implemented as
an invisible directory, it modifies the parent directory hardlink count.)

4.6.1. Specify exceptions for the hardlink check

Some filesystems do not always follow the rule mentioned above (directory hardlink equals number
of subdirectories). E.g. the root directory of reiserfs partitions generally seems to have two additional
hardlinks. To account for such exceptions, you can specify exceptions with the option HardlinkOff-
set= N: /path in the [Misc] section of the configuration file. Here, N is the numerical offset (actual
- expected hardlinks) for /path. For multiple exceptions, use this options multiple times (note that
'/path N:/path2' would itself be a valid path, so using the option only once with multiple exceptions
on the same line would be ambiguous).

Note

Please note that samhain will not check for an exception if the standard rule (offset =
0) is true for a directory. Thus it will not warn if a directory that once was exceptional
is not anymore.

4.7. Check for weird filenames
Samhain checks for weird filenames (containing control/nonprintable characters, newlines or tabs)
and warns about them at a severity level that is set with SeverityNames= severity in section
[EventSeverity]. The rationale is: most of the time, such names are either the result of user errors,
buggy scripts, or questionable activity.

If you want to add characters to the set of 'good' ones, you can do so with the option: AddOKChars=
N1, N2, ... in the [Misc] section of the configuration file. Nn should be the unsigned byte value
of the character(s) in hex (leading '0x': 0xNN), octal (leading zero: 0NNN), or decimal.

UTF-8 filenames

To specify that filenames are UTF-8 rather than ASCII, use FileNamesAreUTF8=yes .
Samhain will check for invalid UTF-8 sequences, and for filenames ending with invisible
characters.

Tip

This check will not be performed for files under the IgnoreAll policy. To completely
disable this check, use AddOKChars=all .

44

Configuring samhain, the
host integrity monitor

4.8. Support for prelink
prelink is a tool available on modern Linux systems that can significantly reduce the startup time
of applications. It does this by performing some of the work of the dynamic linker in advance. As
this changes both executables and shared libraries, file integrity verification will fail unless prelink
is supported, in particular as prelinking has to be redone if libraries are updated (so initializing the
checksum database after prelinking may not be good enough).

The disadvantage is that prelinking modifies libraries and executables, and may need to be redone
(potentially modifying all or many executables again) if a library is updated. This is a major problem
for file integrity checkers.

Version 2.0 of samhain and later support prelink. To use this support, you need to place prelinked
executables and libraries (or directories holding them) under the [Prelink] policy rather than under
the (e.g.) [ReadOnly] policy. For all files under the [Prelink] policy, inode, size, and timestamps will
be ignored (prelinking changes them). In addition, for ELF binaries under the [Prelink] policy, /usr/
sbin/prelink --verify will be used to compute checksums (i.e. the checksum will be computed on the
output of this command). For other files, checksums are computed as usual.

Speed

Obviously, invoking prelink results in a significant overhead, and slows down file in-
tegrity checking (tests indicate a factor of three - your mileage may vary).

Verification failures (zero checksum)

It seems that prelink --verify fails if the dependencies of a prelinked binary have
changed. This results in a zero checksum, and can be fixed by re-prelinking the affected
binary.

There are two configuration options in the [Misc] section that can are relevant for prelink support:

SetPrelinkPath= fullpath sets the path to the prelink executable. The default is /usr/sbin/
prelink.

SetPrelinkChecksum= checksum sets the TIGER192 checksum for the prelink executable. You
can compute this with samhain -H /usr/sbin/prelink (remove whitespace from the computed check-
sum). If the checksum is set, samhain will verify the prelink executable immediately before using it,
otherwise prelink will be used without this special precaution.

4.9. SELinux attributes and Posix ACLs

Note for users of SQL database logging

You need to update the database scheme before using this feature, if you are upgrading
from a version below 2.3.0. See Section 12.1 (p. 34) for details.

As of version 2.3, samhain supports checking and verifying of SELinux attributes and/or Posix ACLs,
if the operating system supports these features. SELinux attributes are a Linux-specific feature, while
Posix ACLs are supported by multiple operating systems.

These features will only get compiled if the required development environment is available on the
host where samhain is compiled (e.g. on Debian Linux, packages libattr1-dev and libacl1-dev).

For backward compatibility, these features are disabled by default, even if they are compiled in. To
enable them, use the configuration directives:

 [Misc]
 UseACLCheck = yes

45

Configuring samhain, the
host integrity monitor

 UseSelinuxCheck = yes

4.10. Codes in messages about reported files
As of version 1.8.2, reports about modified files include a short code in the message field to describe
which properties have been modified. The codes are: 'C' for 'checksum', 'L' for (soft) 'link', 'D' for
'device number', 'I' for 'inode', 'H' for (number of) 'hardlinks', 'M' for 'mode', 'U' for 'user' (owner), 'G'
for 'group' (owner), 'T' for 'time' (any), and finally 'S' for 'size'.

As an example, 'C--I----TS' would indicate that a file has been replaced by one with different check-
sum, inode, timestamp, and size, but (e.g.) same mode (type and access permissions) and same own-
ership.

4.11. Loose directory checking
If files are added to, or removed from a directory, or modified by writing a temporary file and renam-
ing it to the original, samhain will report the changed file as well as the changed directory inode.
If you regard the report on the directory inode as redundant, you can suppress it with the option:
LooseDirCheck= true in the [Misc] section of the configuration file. This will cause samhain to
ignore modified directory inodes if nothing else but size and timestamps has changed.

4.12. Storing the full content of a file
This is discussed in Section 20 (p. 68) .

4.13. Who made changes to a file?
First of all, the UID of the user who changed or created a file is not stored in the file metadata, and
hence in general not available. However, some operating systems may have non-standard security
enhancements to log such information.

In particular, sufficiently recent versions of the Linux kernel provide an audit subsystem that can be
used to gather such information if the required userspace tools are installed and the system is properly
configured.

It should be noted that the Linux audit subsystem does NOT audit every file access by default. Rather,
files are only audited if a watch is placed on them. What Samhain can do is making sure that watches
are indeed placed on all files of interest for you (as defined in the Samhain configuration file), and
collecting relevant information in case of an event.

Samhain supports the Linux audit system insofar as it can automatically mark files of interest for
logging, and automatically collects and reports the log information after a change has been detected.
This implies that you don't need to maintain two separate configurations (one for Samhain and one
for the audit daemon).

4.13.1. Compiling

If you compile a Samhain standalone or client executable on a Linux system, support for the Linux
audit system will be compiled in automatically if the required development packages for libaudit and
libauparse are present (Debian: libaudit-dev, RedHat: audit-libs-devel).

To verify that the compiled executable has audit support, use samhain --version, which should list
"optionally report auditd record of changed file".

Not supported with static compiling

This extension is incompatible with static compiling, i.e. it is not available if '--en-
able-static' has been used for compiling.

46

Configuring samhain, the
host integrity monitor

4.13.2. Audit System Configuration

(1) If you want Samhain to report who changed a file, you need to have the Linux audit daemon
(Debian: auditd, RedHat: audit) installed. You also need to have the libaudit and libauparse libraries
installed.

The audit daemon must be running. You can check that with the command auditctl -s , which should
show a non-zero PID for the audit daemon. If it says 'pid=0', you need to enable the audit daemon.
First, make sure the daemon will autostart on boot: on RedHat/CentOS use chkconfig auditd on , on
Debian/Ubuntu use update-rc.d auditd defaults . Second, start the daemon with /etc/init.d/auditd
start .

(2) You are most likely interested in the auid, i.e. the audit UID which tracks the login user. This UID
is only set correctly if you are using the pam_loginuid PAM module, and in a correct way even. Please
read the man page for pam_loginuid carefully, and add the line

session required pam_loginuid.so

to the files /etc/pam.d/gdm, /etc/pam.d/login, /etc/pam.d/atd, /etc/pam.d/
cron, /etc/pam.d/sshd.

Do NOT add this line to /etc/pam.d/su or /etc/pam.d/sudo, as that will set auid=0 and
hence erase the track of the login user. If your system has a /etc/pam.d/common-session file,
don't add it there if that file is included by the /etc/pam.d/su or /etc/pam.d/sudo file(s).

(3) The audit daemon enables the audit system in the kernel. Therefore all processes starting earlier
than the audit daemon itself may get an auid=4294967295 (unknown). To avoid this problem, add
audit=1 to the kernel boot parameters.

(4) Because Samhain needs to fetch the audit information from the audit log, this log needs to be
current. I.e. in the audit deamon configuration (/etc/audit/auditd.conf on Ubuntu), the pa-
rameter 'flush' must be set to DATA or SYNC, otherwise it might happen that the log entry has not
been written yet when Samhain tries to fetch it.

4.13.3. Usage

In order to activate this feature for some particular file or directory, you have to add the AUDIT flag to
the policy under which you place the file or directory (see Section 4.1 (p. 39)). Note that placing
an audit rule on a directory will cause the whole file hierarchy under that directory to be audited. Also
note that you cannot place an audit rule on the root directory itself. This is a limitation of the Linux
audit system itself, not of Samhain. You have to place audit rules on the individual directories in the
root directory.

 [Misc]
 RedefReadOnly = +AUDIT
 #
 [ReadOnly]
 file = /etc/login.defs
 dir = /bin

By default, Samhain will set the flags "wa" (write|attribute change) on which the watch will trigger. If
you want to use other flags (e.g. "r" for read), you can do so with the SetAuditdFlags= r|w|x|a (i.e.
any combination of these four characters, see also man 8 auditctl). Please note that order matters (as
with Redef... directives), i.e. this will affect only files/directories specified afterwards in the config file.

The rules set by Samhain are flagged with samhain, i.e. you can check them with auditctl -l -k
samhain, and delete them manually with auditctl -D -k samhain. See the man page of the auditctl
command for further reference.

47

Configuring samhain, the
host integrity monitor

If you want to verify that the audit system works properly, you can e.g. use ausearch -k samhain to
see all audit log entries generated by rules flagged with 'samhain', i.e. inserted by Samhain.

Persistance of audit rules

If Samhain runs in the foreground, it will not delete the inserted rules upon exit. This is to
ensure that file changes are still audited as desired when Samhain is run only occasionally
or at fixed intervals (e.g. as a cron job). If you want to delete the rules, use the command
auditctl -D -k samhain .

4.14. Skip checksumming for particular files
Checksumming can put a high I/O load on a machine, and in some cases one might want to skip
this for particular files. As of version 2.8.2, Samhain allows to specify certain conditions for which
checksumming of a file should be skipped. These are:

match_prefix(string) Skip checksumming if the full path of the file starts with the
given string (e.g.: /home/someuser).

match_regex(regular_expression) Skip checksumming if the full path of the file matches the given
POSIX regular expression (e.g.: .*\.mpg$).

size_exceeds(bytes) Skip checksumming if the filesize exceeds the given size (in
bytes).

match_permission(octal_perm) Skip checksumming if the file permissions exactly match the
given one (as octal number, e.g. 0755 for rwxr-xr-x, or 4755
for rwsr-xr-x).

have_permission(octal_perm) Skip checksumming if the file permissions include the given
one (as octal number, e.g. 0100 for execute by owner).

match_filetype(filetype) Skip checksumming if the file is of some particular type. See
appendix for a list of supported file types.

Files that should not be checksummed are specified with SkipChecksum= list of conditions
in the [Misc] section of the configuration file. The following rules apply:

1. To negate a condition, place an exclamation mark ('!') in front of it.

2. All conditions in the given list are and ed, i.e. checksumming for a file is skipped only if all con-
ditions in the list are true. E.g. you can place a match_prefix(string) condition at the start of the list
to avoid evaluation of the following condition(s) for files that should not be skipped.

3. If more than one SkipChecksum=... directives are given, then they are or ed, i.e. checksumming
for a file is skipped if one of the directives matches.

4.14.1. User-defined file types

It is possible to add (at most 16) user-defined filetype descriptions to the compiled-in list. This can
be done with the directive FileType= description where the format of description is 8 fields,
separated by ':'.

The 8 fields are offset:type:length:G1:G2:G3:Name:Teststring, which describe:

1. An optional offset into the file, can be at most 3072-length. Counting starts at 0, thus '6' would
mean the 7th byte of the file.

2. Type is 0 for a C string, 1 if binary, i.e. if the teststring contains NULL bytes,

3. Length should be 0 if the type is 0, othewise the length of the teststring if it is of type 1 (binary).

48

Configuring samhain, the
host integrity monitor

4. G1, G2, G2 give the filetype as GENERIC:MORE_SPECIFIC:EXACT, e.g. IMAGE:COM-
PRESSED:JPG

5. The name field is currently unused and should hold a human-understandable description, e.g. 'Jpeg
image'

6. The teststring is a string or byte pattern that is found at the given offset in files of this type. You can
use quoted-printable (qp) encoding (which is often used for e-mail) for arbitrary binary patterns. A
qp-encoded character (byte) consists of 3 characters: a "=" followed by the two-digit hexadecimal
value if the byte. Please note that NULL bytes MUST be qp-encoded as '=00', and the equal sign
('=') MUST be qp-encoded as '=3D'.

A valid example would be FileType= 6:0:0:IMAGE:COMPRESSED:JPG:JFIF Jpeg:JFIF
(this one is already compiled in). This would recognize any file with the string 'JFIF' starting at the
7th byte (counting starts at '0') as a Jpeg image.

4.15. Graceful handling of log rotation
Growing log files should be placed under the [GrowingLogFiles] policy which (as of 3.0.11+) uses
the following logic to handle log rotation:

If the size has shrunk (e.g. because of log rotation), samhain will look for a file with the same inode as
before and check whether it has a size >= previous_size, and checksum(file start up to previous size)
equal to the previous checksum. No report will be issued if this check succeeds. Thus log rotation will
be handled gracefully as long as the inode is kept (i.e. the old file is moved rather than copied) and
the first rotated file is not compressed (the logrotate tool can be told to compress only after the second
cycle, and on Debian this seems to be standard anyway).

4.16. No such user/group
Samhain will report on files that are unowned (i.e. belong to a UID/GID that is not associated with an
existing user or group. The rationale is that this is a security risk. An administrator (or administrative
script) may get tricked into creating a user/group for that UID/GID, thus allowing the freshly created
user/group to hijack the unowned files.

As of version 4.3.0, on Linux Samhain will ignore unowned files if the UID/GID is mapped in a user
namespace via the /etc/subuid and /etc/subgid files respectively.

5. Excluding files and/or subdirectories (All
except...)

To exclude individual files from a directory, place them under the policy IgnoreAll. Note that the
existence of such files will still be checked (see next section).

To exclude subdirectories from a directory, place them under the policy IgnoreAll with an individual
recursion depth of -1(see Section 4.5 (p. 43)).

Note

Changes in a directory may also modify the directory inode itself (i.e. the special file that
holds the directory information). If you want to check all but a few files in a directory
(say, /etc), and you expect some of the excluded files to get modified, you should
use a setup like:

 [ReadOnly]
 #

49

Configuring samhain, the
host integrity monitor

 dir=/etc
 #
 [Attributes]
 #
 # less restrictive policy for the directory file itself
 #
 file=/etc
 #
 [IgnoreAll]
 #
 # exclude these file and directories
 #
 file=/etc/resolv.conf.save
 dir=-1/etc/calendar
 #

6. Timing file checks
In the Misc section of the configuration file, you can set the interval (in seconds) between succesive
file checks:

SetFilecheckTime= value

Alternatively, you can specify a crontab-like schedule with:

FileCheckScheduleOne= schedule

The schedule follows the same rules as crontab(5) entries, with two noteable exceptions: (a) lists are
not allowed, and (b) ranges of names (like Mon-Fri) are allowed. See man 5 crontab for details. You
can specify a list of schedules, with separate FileCheckScheduleOne=... directives on separate lines.

Note

If you need a list in your schedule, you can either use steps (like */2 for 'every two
minutes/hours/...), or you can specify a list of schedules, with separate FileCheckSched-
uleOne=... directives on separate lines.

6.1. Using a second schedule
If you want to check some files rather often, while doing a more extensive check only sometimes,
this is supported as follows:

• Enclose all directories for the more extensive check in a %SCHEDULE_TWO ... !%SCHED-
ULE_TWO block like:

 %SCHEDULE_TWO
 dir=/check/only/once/per/day
 !%SCHEDULE_TWO

• Define an optional second schedule as follows (similar to FileCheckSchedule, you can specify a
list of schedules):

FileCheckScheduleTwo= schedule2

Rules:

50

Configuring samhain, the
host integrity monitor

1. All files and directories will always be checked at FileCheckScheduleTwo.

2. All single files (file=...) will always be checked at both FileCheckScheduleOne and FileCheck-
ScheduleTwo (rationale: this is required to check for missing/added files in directories).

3. All directories outside the %SCHEDULE_TWO block will be checked at both FileCheckSched-
uleOne and FileCheckScheduleTwo.

4. All directories inside the %SCHEDULE_TWO block will be checked at FileCheckScheduleTwo
only.

Missing files

If you are using a second schedule, the full check for missing files will only be done
at FileCheckScheduleTwo. For paths directly defined in the configuration, e.g. with
file=... , samhain will detect immediately if the file is missing, if the path is checked at
FileCheckScheduleOne.

7. Initializing, updating, or checking
In the Misc section of the configuration file, you can choose between initializing the database, updating
it, or checking the files against the existing database:

ChecksumTest= init|update|check|none

If you use the mode none, you should specify on the command line one of init, update, or check, like:
samhain -t check

As of version 1.8.1, there is a new command line flag --interactive to enable interactive updates. If
you use this flag together with -t update, you will be asked if the database entry should be updated,
whenever samhain encounters a modified file.

As of version 2.8.6, updates can also be done using a text file listing paths (one per line) of files to
update, with the command line flag --listfile= path_to_listfile

8. The file signature database
The database file is named samhain_file by default, and placed into /usr/local/var/lib/
samhain by default (name and location can be configured at compile time).

The database is a binary file. For security reasons, it is recommended to store a backup copy of the
database on read-only media, otherwise you will not be able to recognize file modifications after its
deletion (by accident or by some malicious person).

samhain will compute the checksum of the database at startup and verify it at each access. samhain
will first open() the database, compute the checksum, rewind the file, and then read it. Thus it is not
possible to modify the file between checksumming and reading.

9. Checking the file system for SUID/SGID bi-
naries

To compile with support for this option, use the configure option

./configure --enable-suidcheck

If enabled, this will cause the samhain daemon to check the whole file system hierarchy for SUID/
SGID files at user-defined intervals, and to report on any that are not included in the file database. Upon
database initialization, all SUID/SGID files will automatically be included in the database. Excluded

51

Configuring samhain, the
host integrity monitor

are nfs, proc, msdos, vfat, and iso9660 (CD-ROM) file systems, as well as file systems mounted with
the 'nosuid' options (the latter is not supported on all OSes, but at least on Linux).

On Linux, files that are marked as candidates for mandatory locking (group-id bit set, group-execute
bit cleared) will be ignored.

You can manually exclude one directory (see below); this should be used only for obscure problems
(e.g.: /net/localhost on Solaris - the automounter will mirror the root directory twice, as '/net/localhost'
and '/net/localhost/net/localhost', and any nfs file system in '/' will be labelled as ufs system in '/net/
localhost/net/localhost' ...).

Note

The SUID check is very I/O expensive. Using 'nice' may not help, if the CPU is waiting
for I/O all the time anyway. To limit the load, the following options are provided:

You can schedule execution at fixed times with SuidCheckSchedule= schedule .

You can limit I/O with the SuidCheckFps= fps option (fps: files per second).

As an alternative to the SuidCheckFps option, you can use SuidCheckYield= yes .
This will cause the SuidCheck module to yield its time slice after each file. If Suid-
CheckYield is used, the SuidCheckFps option will not take effect.

The schedule should have the same syntax as a crontab entry (see crontab(5) and example
below), with the following exceptions: (a) lists are not allowed, and (b) ranges of names
are allowed. If a schedule is given, the SuidCheckInterval option will not take effect.
You can specify a list of schedules with successive SuidCheckSchedule=... directives.

9.1. Quarantine SUID/SGID files
As of version 1.8.4, it is possible to quarantine new SUID/SGID files detected by samhain. To use
this option, you must first enable it with SuidCheckQuarantineFiles= yes . This tells the SuidCheck
module to quarantine any SUID/SGID files found after the initialization of the database using the
method selected in SuidCheckQuarantineMethod (see next paragraph). If this is used, the file will
be logged each time it is found and not added to the memory resident database.

You must also choose a method to be used to quarantine a SUID/SGID file: SuidCheckQuaranti-
neMethod= 0/1/2 . Currently, there are 3 methods implemented: 0 - Delete the file from the system.
1 - Remove the SUID/SGID permissions from the file. 2 - Move the SUID/SGID file to a quarantine
directory. The quarantine directory is DEFAULT_DATAROOT/.quarantine. Each file moved
there has an additional file created that contains information about the SUID/SGID file. For example,
if a file /foo is an unauthorized SUID/SGID file, then it will be removed and moved to /var/
lib/samhain/.quarantine and another file, foo.info, will be created in /var/lib/
samhain/.quarantine with information about /foo.

Important remarks

Methods 0 and 2 will by default not remove the original file, but rather truncate to zero
size and remove suid/sgid properties. If you really want to remove the original file rather
than truncate, you need to set the option SuidCheckQuarantineDelete= yes

The rationale for this behaviour is that removing a file in an arbitrary directory is con-
sidered to be dangerous, because the object that is unlinked may not be the same object
anymore that has been determined to be a suid/sgid file before. You have been warned.

For additional security, samhain will recursively chdir into the parent directory of the
file to make sure there are no symlinks in the path. Also, a file will not be truncated if
it is a hardlink to another one.

52

Configuring samhain, the
host integrity monitor

No quarantining will be done if samhain is run in 'update' mode, since it is assumed
that the current filesystem state is ok, and the database should be updated to reflect the
current state.

9.2. Configuration
This facility is configured in the SuidCheck section of the configuration file.

 [SuidCheck]
 # activate (0 for switching off)
 SuidCheckActive=1
 # interval between checks (in seconds, default 7200)
 # SuidCheckInterval=86400
 # scheduled check at 01:30 each night
 SuidCheckSchedule=30 1 * * *
 # this is the severity (see Section 1.1 (p. 19))
 SeveritySuidCheck=crit
 # you may manually exclude one directory
 SuidCheckExclude=/net/localhost
 #
 # limit on files per seconds
 SuidCheckFps=250
 # alternatively yield time slice after each file
 # SuidCheckYield=yes
 #
 # Quarantine detected SUID/SGID files
 # SuidCheckQuarantineFiles=no
 #
 # Quarantine Method
 # 0 - Delete the file from the system.
 # 1 - Remove the SUID/SGID permissions from the file.
 # 2 - Move the SUID/SGID file to a quarantine directory.
 # The quarantine directory is DEFAULT_DATAROOT/.quarantine.
 # SuidCheckQuarantineMethod = 1
 #
 # Really delete if using methods 0 or 2
 # SuidCheckQuarantineDelete = no

10. Detecting Kernel rootkits
This option has been removed as of samhain 4.0 because it has been obsoleted by modern kernel
developments.

11. Monitoring login/logout events
To compile with support for this option, use the configure option

./configure --enable-login-watch

samhain can be compiled to monitor login/logout events of system users. For initialization, the system
utmp file is searched for users currently logged in. To recognize changes (i.e. logouts or logins), the
system wtmp file is then used.

Optionally, it is possible to perform further checks for login events. All these additional checks are
off by default. The following checks are provided:

53

Configuring samhain, the
host integrity monitor

First login Report on the first login from a host or a domain / subnet. This
option is configured with the directive:

LoginCheckFirst = no|yes|domain

If set to yes, samhain will issue a report when a user logs in from
some host they haven't logged in from before. If set to domain,
the domain (or C-class subnet, if the host cannot be resolved) is
checked instead of the host.

Statistical outlier Report unusual login times. This option will only take effect once
a user has logged in several times, and a database of login times
has been built which can be analyzed for statistical outlier detec-
tion. Since this is based on statistics, it will inevitably cause false
positives (legitimate logins reported as outliers). This option is
configured with the directive:

LoginCheckOutlier = no|yes|paranoid

If set to yes, samhain will issue a report when a login time is
found to be an outlier with 99 per cent probability. If set to para-
noid, the required outlier probability is lowered to 95 per cent,
resulting in more reports and more false positives (legitimate lo-
gins reported as outliers).

Login date (global) Report login events occuring outside some given date restric-
tions. This option is configured with the directive:

LoginCheckDate = date

Possible values for dateare: always, never, and work-
days|saturday|sunday(list of time ranges), e.g. work-
days(8:00-10:00,13:00-16:00) or saturday(08:10-17:20). To set
date restriction for workdays (Mo-Fr) and saturday and/or sun-
day, use LoginCheckDate multiple times. The internal time res-
olution is ten minutes, i.e. 8:09 will be interpreted as 8:00.

Login date (individual) Report login events occuring outside some date restrictions de-
fined for the given individual user. This option, if defined for a
given user, overrides the global setting above, and is configured
with the directive:

LoginCheckUserDate = user:date

Here, usermust be the login name for a user, and datehas to
be given as in the global option.

This facility is configured in the Utmp section of the configuration file:

 [Utmp]
 #
 # activate (0 for switching off)
 #
 LoginCheckActive=1
 #
 # interval between checks (in seconds)
 #
 LoginCheckInterval=600
 #

54

Configuring samhain, the
host integrity monitor

 # these are the severities (see section Section 1.1 (p. 19))
 #
 SeverityLogin=info
 SeverityLogout=info
 #
 # multiple logins by same user
 #
 SeverityLoginMulti=crit

12. Checking mounted filesystem policies
To compile with support for this option, use the configure option

./configure --enable-mounts-check

samhain can be compiled to check if certain filesystems are mounted, and if they are mounted with
the appropriate options. This module currently supports Linux, Solaris, HP-UX (mount options as
in /etc/mnttab), and FreeBSD. The configuration of the module is done in the Mounts section of the
configuration file:

 [Mounts]
 #
 # Activate (default is no).
 #
 MountCheckActive = yes
 #
 # Interval between checks (default = one day).
 #
 MountCheckInterval=7200
 #
 # Logging severities. We have two checks:
 # 1) to see if a mount is there (default = err), and
 # 2) to see if it is mounted with the correct options (default = err).
 #
 SeverityMountMissing=warn
 SeverityOptionMissing=warn
 #
 # Mounts to check for, (optionally) followed by lists of
 # mount options to check on them.
 #
 checkmount=/
 checkmount=/var
 checkmount=/usr
 checkmount=/tmp noexec,nosuid,nodev
 checkmount=/home noexec,nosuid,nodev

This module by the eircom.net Computer Incident Response Team.

13. Checking sensitive files owned by users
To compile with support for this option, use the configure option

./configure --enable-userfiles

samhain can be compiled to support checking of files that are specified as being relative to the a user's
home directory. It is intended to detect interference with files that influence process behaviour such

55

Configuring samhain, the
host integrity monitor

as .profile It simply adds the appropriate file entries to the main samhain list, at the specified
alerting level.

 [UserFiles]
 #
 # Activate (0 is off).
 #
 UserfilesActive=1

 #
 # Files to check for under each $HOME
 # A specific level can be specified.
 # The allowed values are:
 # allignore
 # attributes
 # logfiles
 # loggrow
 # noignore
 # readonly
 # user0
 # user1
 # user2
 # user3
 # user4
 #
 # The default is noignore
 #
 UserfilesName=.login noignore
 UserfilesName=.profile readonly
 UserfilesName=.ssh/authorized_keys
 #
 # A list of UIDs where we want to check.
 # The default is all.
 # IF THERE IS AN OPEN RANGE, IT MUST BE LAST
 #
 UserfilesCheckUids=0,100-500,1000-

This module by the eircom.net Computer Incident Response Team.

14. Checking for hidden/fake/missing
processes

To compile with support for this option, use the configure option

./configure --enable-process-check

This module enables samhain to check for processes that are:

(a) hidden from ps, i.e. running processes that are not listed by ps,

(b) fake, i.e. listed by ps although they don't exist, and

(c) missing, i.e. processes that are required to run (as specified by the user), but are actually not running.

The module works by searching the complete range of possible PIDs for processes, and comparing the
list of processes thus found against the output of ps. Note that the range of possible PIDs is OS-specific,
and in general must be configured by the user (except for Linux, where it is determined automatically).

56

Configuring samhain, the
host integrity monitor

Threads

Threads (including kernel threads) may be detected as well; thus ps must be called with
the proper argument such that threads are listed as well, otherwise they will be reported as
hidden. On Linux, this is handled automatically by the code, for other operating systems,
you can use the configuration option ProcessCheckPSArg= arg to set the argument
to ps .

E.g. OpenBSD needs ProcessCheckPSArg= axk such that kernel threads are listed as
well.

The ProcessCheckPSArg option

Samhain expects that the first numerical column is the PID. On Linux, the PID column
needs to be followed by the SPID (thread id). I.e., on Linux ProcessCheckPSArg= -
efT will work if none of the usernames is numeric.

OpenVZ

The OpenVZ virtualisation has one hidden process for each visible process (within the
container). If you run samhain within an OpenVZ container, use ProcessCheckIsOpen-
VZ= true to automatically avoid false positives.

14.1. Example configuration

 [ProcessCheck]
 #
 # Activate (default is on)
 #
 ProcessCheckActive = yes

 # The severity of reports: debug/info/notice/warn/err/crit/alert
 # (default is crit)
 #
 SeverityProcessCheck = crit

 # The PID range (default is 0 to 32767)
 #
 ProcessCheckMinPID = 0
 ProcessCheckMaxPID = 32767

 # The interval (in seconds) for process checks (default is 300 sec)
 #
 ProcessCheckInterval = 300

 # Specify a process that is required to run. The argument
 # must be a POSIX regular expression that matches the
 # output of ps (samhain will check whether the PID in the
 # output of 'ps' actually runs). You can use this option
 # multiple times. Note that each matching substring in a line
 # from the 'ps' output is considered a successful match.
 #
 ProcessCheckExists = syslogd

 # The 'configure' script determines automatically
 # the location of 'ps' as well as whether it is
 # Posix or BSD style. Therefore, these options may

57

Configuring samhain, the
host integrity monitor

 # not be required. For 'ProcesscheckPSArg', note
 # that the first numerical column must be the PID, except on
 # Linux, where the format 'PID SPID ...' is expected
 # (spid = thread id), as shown by 'ps -eT' or 'ps -efT'.
 #
 # ProcessCheckPSPath = /usr/bin/ps
 # ProcessCheckPSArg = -e

15. Checking for open ports
To compile with support for this option, use the configure option

./configure --enable-port-check

This module enables samhain to check for open ports (services) on the local machine, and report ports
that are open, but not listed in the configuration. Reports are like:

interface:portnumber/protocol
(maybe_servicename)

This is a non-RPC service, e.g. 192.168.1.2:22/tcp
(maybe_ssh). The service name is taken from /etc/ser-
vices, and prepended by maybe_, because samhain cannot
determine whether it really is the SSH daemon that is listening
on this port.

interface:portnumber/protocol (ser-
vicename)

This is an RPC service, e.g. 192.168.1.2:2049/tcp (nfs). The
service name is obtained by querying the portmapper daemon.
The portmapper daemon may return a service name as listed in
/etc/rpc, or just a number (if there is no name for the ser-
vice). If the portmapper daemon only returns the number of the
RPC service, samhain will list RPC_number as servicename.

15.1. Options
By default, (only) the interface corresponding to the 'official name' of the host will be scanned. Addi-
tional interfaces can be added via the option PortCheckInterface= (list of) IP address(es)
, where 'IP address' is the address of the interface that should be scanned. You can use this options
multiple times to specify up to 15 additional interfaces, or supply a list of interfaces.

Don't specify external interfaces

While it is possible to misuse this option to specify an external IP address, the check will
only work for interfaces on the local machine.

If addresses are dynamically assigned, you can use instead PortCheckDevice= (list of) de-
vice(s) to specify device(s) to scan, regardless of address(es) assigned to them (each address counts
towards the maximum of 63 interfaces for PortCheckInterface). Devices will be re-checked before
scan to account for address changes.

Services (open ports) that are required or optional (allowed, but not required) can be specified with
the options PortCheckRequired= interface:service list , and/or PortCheckOptional=
interface:service list .

Services (open ports) that should be completely ignored can be specified with the option PortCheck-
Ignore= interface:service list .

Here, 'interface' should be the IP address of an interface, and 'service list' the comma-separated list of
required/optional services. Each service must be listed as 'port/protocol' (e.g. 22/tcp) for a non-RPC
service, and 'name/protocol' for an RPC service (e.g. portmapper/tcp). If an RPC service has no name,
but just an RPC program number, then the name must be given as 'RPC_number' (e.g. RPC_100075).

58

Configuring samhain, the
host integrity monitor

Interface specification

The PortCheckRequired, PortCheckOptional, PortCheckIgnore options are considered
whenever the port is checked on some specific interface, and thus the interface needs to
match and is not optional.

By default, both TCP and UDP ports are scanned. To disable UDP scanning, the option PortCheck-
UDP= boolean can be used.

Ports that should be skipped during the check can be specified with the option PortCheckSkip= in-
terface:port list .

Here, 'interface' should be the IP address of an interface, and 'service list' the comma-separated list
'port/protocol' pairs (e.g.: 22/tcp,514/udp,...) to skip.

This option is different from PortCheckIgnore=... in three ways: (i) since it allows to skip ports only,
it does not work for RPC services which have no fixed port, (ii) since the port is not probed, you
can avoid error messages by obnoxious deamons, and (iii) it works without specifying the interface
(equals to ALL).

MySQL (port 3306)

MySQL counts unsuccessful connection attempts and may refuse further connection if
some limit is exceeded. You may want to use the PortCheckSkip option to avoid probing
the MySQL port.

By default, all ports from 0 to 65535 are scanned. To change these limits, the options PortCheckMin-
Port= integer and PortCheckMaxPort= integer can be used.

15.2. Example configuration

 [PortCheck]
 #
 # Activate (default is on)
 #
 PortCheckActive = yes

 # The severity of reports: debug/info/notice/warn/err/crit/alert
 # (default is crit)
 #
 SeverityPortCheck = crit

 # These are the defaults
 #
 PortCheckMinPort = 0
 PortCheckMaxPort = 65535

 # Services that are required. This example specifies ssl (22/tcp),
 # smtp (25/tcp), http (80/tcp), and portmapper.
 #
 PortCheckRequired = 192.168.1.128:22/tcp,25/tcp,80/tcp,portmapper/tcp,portmapper/udp

 # Services that are optional. This example specifies
 # mysql (3306/tcp).
 #
 PortCheckOptional = 192.168.1.128:3306/tcp

 # Additional interfaces to scan. This example presumes that

59

Configuring samhain, the
host integrity monitor

 # the 'official hostname' corresponds to 192.168.1.128, and
 # that the machine has three more interfaces.
 # 127.0.0.1 (localhost) is not listed, hence not scanned.
 #
 PortCheckInterface = 192.168.1.129
 PortCheckInterface = 192.168.1.130
 PortCheckInterface = 192.168.1.131

 # The interval (in seconds) for port checks (default is 300 sec)
 #
 PortCheckInterval = 300

 # By default, UDP ports are checked as well as TCP ports.
 #
 PortCheckUDP = yes

16. Logfile monitoring/analysis
This option is available with samhain version 2.5.0 and higher. To compile with support for this option,
use the configure option

./configure --enable-logfile-monitor

PCRE library required

This option requires the PCRE (Perl Compatible Regular Expressions) library. Many
Linux distributions split library packages into a runtime package (required to run a de-
pendent executable) and a development package (required to compile an executable). At
least on the build host where samhain is compiled, the development package is required
if you use this option.

This module enables samhain to monitor/analyze logfiles of other applications. Currently (samhain
2.5.0) the following logfile formats are supported:

• Syslog

• Apache (access and error log)

• Samba

• 'pacct' BSD-style process accounting (also available on Linux)

Logfile analysis will always start from the point the last one ended; the pointer into the file is stored
persistently on disk. Logfile rotation is handled automatically as long as the rotated logfile remains
in the same directory and is not compressed(usually log rotation tools can be configured to compress
only after the second rotation, which is advisable for unrelated reasons - the logging application may
still have an open file pointer after logfile rotation).

Logfile entries can be filtered with Perl-style regular expressions (filter rules). Regular expressions
must match the whole logfile record. For efficiency, regular expressions can be grouped under a com-
mon regular expression, i.e. if the group expression fails to match, no RE in the group is tried. Fur-
thermore, (groups of) regular expressions can be grouped by host, if the logfile(s) contain host infor-
mation (such as host information in centralized syslog server logfiles, or virtual host information in
Apache logfiles). Note that host->group->rule is supported (just as host->rule or group->rule), while
group->host->rule isn't.

Each filtering rule (regular expression) is assigned to an output queue. Currently (samhain 2.5.0)
queues only differ in the assigned severity of an event, but more options (per-queue mail addresses
for alerts) are under development.

60

Configuring samhain, the
host integrity monitor

Filtering rules are processed in the order given in the configuration file, i.e. the first match wins.

Blacklisting vs. whitelisting, and the 'trash' output queue

Output queues are labelled. The label 'trash' is reserved and refers to the trash bin (no
output, throw away log entries if the matching rule is assigned to the 'trash' queue).

If a logfile entry does not match any rule, it is reported (i.e. the default is whitelisting
known-good entries). To turn this into a blacklisting policy, simply add a catch-all rule
at the end and assign it to the 'trash' queue.

16.1. Event Correlation
Sometimes it is desirable to report on the fact that several events happend at a similar time, possibly
in a particular order. As of version 2.6.1, samhain supports this in the following way:

16.1.1. Marking individual events to be correlated

First, individual events to be correlated need to be marked for keeping them, under an arbitrary user-
defined label, for an arbitrary user-defined time. So the rule for matching an event has to be modified
like this:

LogmonRule=KEEP(seconds,label): queue_label: (perl)regex matches a logfile en-
try against the provided regular expression, AND keeps it for the specified time in seconds, with the
specified label. In other words, processing of this rule will be no different than other rules, except for
the fact that also a memory of the event is kept for the specified amount of time. So if you e.g. don't
want a separate report for this individual event, just assign it to the trash queue.

16.1.2. Correlating the marked events

To correlate events labelled label_one, label_two, etc., just build a regular expression that matches the
labels, in the temporal order you want to check for. E.g. if the temporal order is irrelevant, you may
want to match (label_one.*label_two)|(label_two.*label_one). Use this expression in a rule maked
as CORRELATE(description), like this:

LogmonRule=CORRELATE(description): queue_label: (perl)regex

Old records in existing logfiles

Because the 'keep' timeout is relative to the current time, correlation of old entries in
logfiles (i.e. when, at startup, an existing logfile with old entries is scanned) will only
work if you specify 'keep' timeouts that are long enough to cover the whole timespan
from the first logfile record until now.

16.2. Reporting non-occurence of an event
To check whether a given event occurs at least once within some given interval, the rule for matching
an event can be modified like this:

LogmonRule=MARK(seconds,description): queue_label: (perl)regex matches a
logfile entry against the provided regular expression, AND checks whether is occurs at least once
within the specified interval (seconds).

Processing of this rule will be no different than other rules otherwise, so if you e.g. only want a report
for this event if it is missing, just assign it to the trash queue. However, in the latter case the severity
for reporting the messages must be set separately with the LogmonMarkSeverity directive, because
the 'trash' queue has no severity assigned:

LogmonMarkSeverity= severity — Severity for reports on missing heartbeat messages if the
messages themselves are assigned to the 'trash' queue (default: crit).

61

Configuring samhain, the
host integrity monitor

16.3. Reporting bursts of similar, repeated events
Samhain can automatically detect and report bursts of similar, repeated events in the monitored log-
files. Here similar, repeated events refers to events that differ (only) in details that can be expected
to differ for events of the same kind: IP adresses, FQDNs, email adresses, and numbers. The event
history goes back 12 minutes, and thus a report is triggered if the number of similar events within the
last 12 minutes exceeds a given threshold (default: 24).

This feature is off by default. In order to switch it on, you need to set a reporting queue:

LogmonBurstQueue= queue — Set the reporting queue for reporting bursts of similar log messages
(default: don't report).

In addition, there are two more configurable parameters, one to set the triggering threshold (i.e. the
number of messages within 12 minutes that need to be exceeded to raise an alert), and another one to
indicate whether messages from the cron daemon should be considered as well (default: no):

LogmonBurstThreshold= number — The number of repeated messages within 12 minutes that
must be exceeded to report a burst of repeated messages (default: 24).

LogmonBurstCron= boolean — Whether to report also on bursts of repeated cron messages (de-
fault: false).

16.4. Options
LogmonActive= boolean switches this module on or off (default: off).

LogmonSaveDir= /absolute/path sets the directory where checkpoint data for logfiles is stored
(default: same as for database file).

LogmonClean= boolean delete old checkpoint data unmodified for 30 days or more (default: off).

LogmonInterval= seconds sets the interval for logfile checking (default: 10 seconds).

LogmonMarkSeverity= severity — Severity for reports on missing heartbeat messages if the
messages themselves are assigned to the 'trash' queue (default: crit).

LogmonBurstThreshold= number — The number of repeated messages within 12 minutes that
must be exceeded to report a burst of repeated messages (default: 24).

LogmonBurstQueue= queue — Set the reporting queue for reporting bursts of similar log messages
(default: don't report).

LogmonBurstCron= boolean — Whether to report also on bursts of repeated cron messages (de-
faul: false).

LogmonDeadtime= seconds — Do not report a correlated event again within the given time (de-
fault: 60 seconds).

LogmonWatch= TYPE:path[:format] advises the module to monitor the logfile with the
specified path, which is of type 'TYPE' (logfile types are uppercase). Some logfile types (e.g. Apache
access logs) can be customized, and hence some format information must be provided.

Do not quote the format

Please note that it's neither required nor supported to add quotes around the format string.
Likewise, quotes within the format should not be escaped. Wrong:

LogmonWatch= APACHE:/var/log/apache/access.log:"%h %l %u %t
\"%r\" %>s %b \"%{Referer}i\""

62

Configuring samhain, the
host integrity monitor

Correct:

LogmonWatch= APACHE:/var/log/apache/access.log:%h %l %u %t
"%r" %>s %b "%{Referer}i"

Currently (samhain 2.6.4) the following logfile types are supported

SYSLOG Standard UNIX style syslog files. Matching starts at the command (i.e. after the hostname).
To select certain hostnames, place the rule under a LogmonHost directive (see below). If
the LogmonHidePID option is used, the RE should not account for the process PID.

APACHE Apache (or compatible) webserver access and/or error logs. Required format information:
either one of combined, common, or error(error log), or the Apache custom log for-
mat specification used (also '%{X-Forwarded-For}i' is recognized). The whole log line is
matched. If there are virtual hosts (%v), then the LogmonHost directive will match the
virtual host.

In addition to the Apache format specifications, is possible to insert a literal regular ex-
pression as RE{ regex} (samhain 2.8.4+).

SAMBA Samba logfile format (multiline, timestamp and origin within samba source code on first
line, log message on continuation lines). The RE will match the continuation line (with
the log message) only.

PACCT BSD style process accounting (also available on Linux). This is a binary logfile. The mod-
ule will build a text line like the 'last' command does, and match it against the RE.

What is pacct good for? Note that pacct records contain only the executable name, not
the arguments. This may look somewhat useless for shell accounts, but is quite useful
for servers: how many different commands can e.g. postfix legitimately execute? Just a
handful, indeed, and certainly none of them is /bin/sh! So if pacct says that the 'postfix'
user has executed a shell, then this would be rather alarming...

SHELL A shell command. The full output on stdout will be read and matched. The PATH envi-
ronment variable will be set to /sbin:/bin:/usr/sbin:/usr/bin:/usr/ucb,
and the SHELL, IFS, and TZ variables will be defined. The command is executed via /
bin/sh -c command .

LogmonHidePID= boolean is an option that only affects logfiles of type SYSLOG. It causes the
PID to be stripped from the log line (before matching against the RE).

LogmonQueue= label:[interval]:(sum|report):severity[:alias] defines an
output queue. Here, label is an arbitrary name which is used to assign rules to this queue; interval
is the timespan over which messages are summarized if the queue is of type 'sum'; sum(summarize
over some interval) or report(report each event separately and immediately) are the two queue type
supported, and severity is the severity assigned to an event. Furthermore, optionally it is possible to
specify an alias(must be defined in the email configuration) to direct email for this rule to a specific
list of recipients.

Email

If you spefify a list alias, email will still go to all defined email recipients unless filtered,
e.g. with

 SetMailFilterNot = \[Logfile\]

I.e. you may want to define recipients, filter them as above, and then define list aliases
to be used in an event queue. See Section 4 (p. 23) for more information.

63

Configuring samhain, the
host integrity monitor

LogmonHost= (perl)regex causes the following rules to be applied only to entries for this host(s).
It is ended implicitely by another LogmonHost directive, or explicitely by a LogmonEndHost direc-
tive.

LogmonEndHost explicitely ends a preceding LogmonHost directive.

LogmonGroup= group_label:(perl)regex causes the following rules to be applied only if
the group regex matches (i.e. rules within the group are skipped if the group regex doesn't match. This
can be used to improve speed/efficiency of matching, i.e. you can group regexes by a common prefix. A
group is ended implicitely by another LogmonGroup directive, or explicitely by a LogmonEndGroup
directive.

LogmonEndGroup explicitely ends a preceding LogmonGroup directive.

LogmonRule= queue_label:(perl)regex matches a logfile entry against the provided reg-
ular expression. If the expression matches, then captured subexpressions are replaced by '___', and the
logfile entry is reported as specified for the queue referenced by queue_label. Non-captured subex-
pressions (i.e. subexpressions where the opening bracket is followed by '?:') are not replaced by '___',
but reported literally.

LogmonRule=KEEP(seconds,label): queue_label:(perl)regex as above, but addi-
tionally keep the event label for seconds to perform event correlation.

LogmonRule=CORRELATE(description): queue_label: (perl)regex perform event
correlation by matching the labels(as specified in KEEP rules) of a sequence of events against the
given regular expression.

LogmonRule=MARK(seconds,description): queue_label: (perl)regex matches a
logfile entry against the provided regular expression, AND checks whether is occurs at least once
within the specified interval (seconds).

16.5. Example configuration

 [Logmon]

 #
 # Switch on the module
 #
 LogmonActive = yes

 # Check every second
 #
 LogmonInterval = 1

 # Strip PIDs from syslog messages
 #
 Logmonhidepid = true

 # Define a queue with severity 'crit'.
 # This is a 'report' queue, hence 'interval' (10)
 # will be ignored.
 #
 LogmonQueue = q1:10:report:crit

 # Define a second queue with severity 'alert'
 #
 LogmonQueue = q2:10:report:alert

 # Monitor /var/log/messages, which is a syslog file

64

Configuring samhain, the
host integrity monitor

 #
 LogmonWatch = SYSLOG:/var/log/messages

 # Monitor /var/log/samba/log.nmbd, which is a samba
 # logfile
 #
 LogmonWatch = SAMBA:/var/log/samba/log.nmbd

 # Monitor /var/log/apache2/access.log, which is
 # an Apache logfile in 'combined' format
 #
 LogmonWatch = APACHE:/var/log/apache2/access.log:combined

 # Monitor disks to check for full /dev/sda1
 #
 LogmonWatch = SHELL:df -h

 # Syslog messages for the pppd deamon
 #
 LogmonGroup = g1:pppd.*
 #
 # Rules in this group
 #
 LogmonRule = q1:pppd:\s+primary.*
 LogmonRule = q1:pppd:\s+secondary.*
 #
 LogmonEndGroup

 # Warn about disk /dev/sda1 nearly full (80% or more. Use a
 # non-capturing subexpression [the (?:8|9)] for the percentage full.
 #
 LogmonRule = q1:/dev/sda1\s+[0-9GM.]+\s+[0-9GM.]+\s+[0-9GM.]+\s+(?:8|9).%.*

 # Messages starting with WARNING (some samba stuff)
 #
 LogmonGroup = g2:WARNING.*
 LogmonRule = q2:.*interfaces.*
 LogmonEndGroup

 # Report on these events if happening within 120 seconds.
 # Set LogmonDeadtime to 120 seconds to avoid multiple reports.
 # Use the 'trash' queue for the keep rules to avoid reports on
 # the individual events.
 #
 LogmonRule = KEEP(120,event1):trash:sshd: Accepted publickey for root.*
 LogmonRule = KEEP(120,event2):trash:sshd: pam_unix\(sshd:session\).*
 LogmonRule = CORRELATE(root_login):q1:(event1.*event2)|(event2.*event1)

 LogmonDeadtime = 120

 # Throw away all non-matching entries. This amounts
 # to a blacklist policy (only report known bad).
 #
 # Usually considered bad practice!!! Use whitelisting!
 #
 # 'trash' is a built in queue, no definition needed.
 #
 LogmonRule = trash:.*

65

Configuring samhain, the
host integrity monitor

17. Checking the Windows registry
32bit vs. 64bit views

On 64bit Windows, the same key name may get mapped to different keys, depending
on whether the lookup is done by a 32bit or 64bit application. Currently samhain does
not check the alternate view.

This option is available with samhain version 2.8.0 and higher, when compiled on Cygwin/Windows.
It enables samhain to verify the integrity of individual keys, or complete trees/hierarchies of keys, in
the Windows registry.

Be careful what you ask for

The Windows registry is huge, i.e. it may contain a huge amount of keys, for which
baseline data will get stored in the samhain baseline database if you desire to monitor
all of them. There is the potential to blow up the size of the baseline database in a quite
spectacular way.

17.1. Options
All options for this module go into the section [Registry] .

RegistryCheckActive= boolean switches this module on or off (default: off).

RegistryCheckInterval= seconds defines the interval (in seconds) between consecutive checks.
The default is 300 seconds.

SeverityChange= severity defines the severity for reports on modifications to the registry.

IgnoreTimestampOnly= boolean to ignore changes where only the (write) timestamp has changed
(default: off).

SingleKey= key defines a key to be monitored (of course it is possible to use this command mul-
tiple times). Valid key names must start with one of: HKEY_CLASSES_ROOT, HKEY_CURREN-
T_USER, HKEY_LOCAL_MACHINE, or HKEY_USERS. The Windows path separator ('\') must
be used.

Hierarchy= key defines a key hierarchy in the registry, beginning at the specified key, to be mon-
itored (of course it is possible to use this command multiple times). Valid key names must start
with one of: HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE,
or HKEY_USERS. The Windows path separator ('\') must be used.

Escaping the path separator

The following two directives (StopAtKey, IgnoreKey) take a (POSIX) regular expres-
sion as argument. This implies that the path separator must be escaped by doubling it, i.e.
you need to write '\\' instead of '\', because the '\' is a metacharacter in regular expressions
(see example below).

StopAtKey= regex means that the check of a hierarchy will stop at the specified key, i.e.
nothing below this key will be checked or monitored (but the key itself where the check stops
will). It is allowed to use a regular expression for the key. Valid key names must start with
one of: HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, or
HKEY_USERS. The Windows path separator ('\') must be used.

66

Configuring samhain, the
host integrity monitor

IgnoreKey= regex differs from the StopAtKey option only insofar as the key where the check stops
is not itself checked.

17.2. Example configuration

 [Registry]

 #
 # Switch on the module
 #
 RegistryCheckActive = yes

 # Check every 60 second
 #
 RegistryCheckInterval = 1

 # Check this and everything below
 #
 Hierarchy = HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft

 # Exclude this and anything below
 # IgnoreKey and StopAtKey have a regex as argument, hence
 # the path separator '\' must be escaped by doubling it.
 #
 IgnoreKey = HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion

 # Check this key
 #
 SingleKey = HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\AFD\Parameters

18. Modules
samhain has a programming interface that allows to add modules written in C. Basically, for each
module a structure of type struct mod_type, as defined in sh_modules.h, must be added to the list
in sh_modules.c.

This structure contains pointers to initialization, timing, checking, and cleanup functions, as well as
information for parsing the configuration file.

For details, in the source code distribution check the files sh_modules.h, sh_modules.c, as
well as e.g. utmp.c, utmp.h, which implement a module to monitor login/logout events. There
is also a HOWTO written by eircom.net Computer Incident Response Team.

19. Performance tuning
File checking is basically I/O-limited, i.e. typically most of the time the application waits for data from
the disk. Most of the application runtime is spent in the checksum algorithm, but as the application is
I/O-limited, using a faster algorithm does not neccessarily result in any noticable speed improvement.

Logging can be very expensive, so you should avoid enabling many different logging facilities. You
should also avoid low logging thresholds (info/debug) on production systems — it tends to drown real
problems in the noise of purely informational messages, and reduces performance quite noticably.

Other things you can do are:

67

Configuring samhain, the
host integrity monitor

• Build a static binary (use the --enable-static switch for configure). Static binaries are faster, and
also more secure, because they cannot be subverted via libraries they depend on. On the other hand,
if there is a bug in one of the statically compiled-in libraries, you would need to re-compile the
executable after an update of the library.

Note

Some functionality may not be available with static binaries, in particular some name
services (NIS, LDAP), the portmap service (used for the port check), and the support
for the Linux audit daemon and SQL databases. On some operating systems (e.g. So-
laris) static compiling may not be possible at all.

• Change the compiler switches to optimize more aggressively.

• If on a commercial UNIX, check whether the native compiler produces faster code (you need an
ANSI C compiler). The ./configure script honours CC (compiler) and CFLAGS environment vari-
ables.

On the other side, if you want to reduce the load caused by file checking, you can change the scheduling
priority (see man nice), and/or limit the I/O:

 [Misc]
 # low priority (positive argument means lower priority)
 SetNiceLevel=19
 # kilobytes per second
 SetIOLimit=1000

If you want to avoid thrashing the file cache, you can tell samhain to drop checksummed files from
the cache (unless they were already cached). For performance reasons, this defaults to 'false'.

 [Misc]
 # drop checksummed files from cache
 SetDropCache = True

Similarly, for the SUID check, you can limit the files per seconds:

 [SuidCheck]
 # limit on files per seconds
 SuidCheckFps=250

20. Storing the full content of a file (aka:
WHAT has changed?)

Consider using a revision control system

One of the most frequently requested features is the ability to determine what has
changed in a file. This is not really within the scope of a file integrity checker; rather it
would be the task of a revision control system like GIT, SVN (subversion) or CVS.

While samhain, as of version 2.4.4, supports storing the full content of files in the base-
line database, this feature is limited to small files (smaller than 9200 bytes after zlib

68

Configuring samhain, the
host integrity monitor

compression). If you really think you need this feature, it is recommended to evaluate
whether a revision control system does not fit your needs better.

As of version 2.4.4, samhain can optionally store the full literal content of regular files in the database,
which allows to determine what has changed in a file. This feature will only get compiled if the required
zlib development environment is available on the host where samhain is compiled (e.g. on Debian
Linux, the package zlib1g-dev). This feature is subject to the following restrictions:

• Only small files can be stored, where 'small' means less than 9200 bytes after zlib compression (and
less than 92000 bytes before compression, i.e. files 10 times larger than the limit are assumed to
not compress below the limit).

• Only regular files can be stored; in particular, symlinks are not stored, since the content of a symlink
inode actually is the target path (which is stored literally). It is safe to enable this for a directory, in
the sense that it is silently ignored for file types where it does not apply.

• The feature must be explicitely enabled in the runtime configuration file by adding the '+TXT' to
the monitoring policy of a file or directory.

To enable this feature, modify a policy to include 'TXT', and place the desired files under this policy
(see example below).

In order to show the stored content of a file, use the following command:

 sh$ samhain --list-file path -d database_path

20.1. Example configuration

 [Misc]
 #
 # UserN policies default to ReadOnly + ATM (access time). This
 # makes the default (intentionally ;-) more or less useless.
 #
 # Redefine to ReadOnly + TXT (store file content)
 #
 RedefUser0 = -ATM, +TXT

 [User0]
 #
 # Files for which we want to store the full content in the
 # baseline database.
 #
 file=/etc/passwd
 file=/etc/group

20.2. Implementation details
File contents are zlib compressed (RFC 1950), and the compressed data are base64 encoded. To avoid
internal conflicts, samhain uses the letters '(', ')' and '?' instead of the letters '+', '/', and '=' used in
standard base64 encoding. E.g. in PHP the following will decode the data:

 $tmp1 = strtr($data, "()?", "+/=");
 $tmp2 = base64_decode($tmp1);

69

Configuring samhain, the
host integrity monitor

 $tmp3 = gzuncompress($tmp2);

21. Inotify support on Linux (instantaneous
reports, no I/O load)

The Linux kernel offers an interface — called inotify— which allows an application to obtain change
notifications for files and directories, if the application has registered watches for the files and direc-
tories it is interested in.

As of version 3.0, samhain optionally can use the inotify interface. The advantage of this is twofold:
First, it is not neccessary to perform regular filesystem scans to detect file changes, i.e. the I/O load is
drastically reduced. And second, changes can be reported immediately, thus allowing faster responses.

Please note

Your system may be configured with a too low default for the maximum inotify watches
per user. You can see the default with:

cat /proc/sys/fs/inotify/max_user_watches

You can change the default temporarily (i.e. until reboot) with:

echo 1048576 /proc/sys/fs/inotify/max_user_watches

You can change the default permanently by placing the following line in /etc/
sysctl.conf(this will take effect at the next reboot):

fs.inotify.max_user_watches=1048576

Alternatively, samhain can be configured to reset the value by itself on startup (see ex-
ample configuration below).

Full scans

(1) On startup, samhain will perform a full scan, first to set the inotify watches, and
second to recover changes that happened after initialisation of the baseline database, but
before starting the file check.

(2) The kernel will queue inotify events. If the queue overflows because there are too
many events in too short a time, the application will be notified. In this case, samhain
will automatically trigger a full scan to recover lost file system changes.

(3) Finally, even if inotify is enabled, samhain will still honour the configured intervals
or schedules for full scans. If you want to rely only on inotify, you may want to configure
a very large interval for filesystem checks, e.g. 'SetFilecheckTime = 315360000' (10
years).

Note that currently, directories specified via wildcard patterns can only be detected in a
full scan if they appear newly in the filesystem (unless of course the parent directory is
monitored anyway). Wildcard patterns for files are checked every 10 seconds.

21.1. Example configuration

 [Inotify]
 #

70

Configuring samhain, the
host integrity monitor

 # Activate (default is off)
 #
 InotifyActive = yes

 # Optionally set the maximum number of watches allowed per user.
 # (default is leave as is). To see the default, use:
 # cat /proc/sys/fs/inotify/max_user_watches
 #
 InotifyWatches = 1048576

71

Chapter 6. Configuring yule, the log
server

yule is the log server within the samhain file integrity monitoring system. yule is part of the distribution
package. It is only required if you intend to use the client/server capability of the samhain system for
centralized logging to yule.

Important

Client and server are distict applications, and must be built separately. By default, instal-
lation names and paths (e.g. the configuration file) are different. Do not blame us if you
abuse './configure' options to cause name clashes, if you install both on the same host.

To compile yule, you must use ./configure --enable-network=server . To compile a
samhain client, you must use ./configure --enable-network=client .

1. General
yule is a non-forking server. Instead of forking a new process for each incoming logging request,
it multiplexes connections internally. Apart from samhain client reports (see below), yule (version
1.2.8+) can also collect syslog reports by listening on port 514/udp, if compiled with this option en-
abled (see also man syslogd .

Each potential client must be registered with yule to make a connection (see Section 1 (p. 37) and
the example below). The client tells its host name to the server, and the server verifies it against the
peer of the connecting socket. On the first connection made by a client, an authentication protocol
is performed. This protocol provides mutual authentication of client and server, as well as a fresh
session key.

By default, all messages are encrypted using Rijndael (selected as the Advanced Encryption Standard
(AES) algorithm). The 192-bit key version of the algorithm is used. There is a compile-time option to
switch off encryption, if your local lawmakers don't allow to use it (see Appendix).

yule keeps track of all clients and their session keys. As connections are dropped after successful
completion of message delivery, there is no limit on the total number of clients. There is, however,
a limit on the maximum number of simultaneous connections. This limit depends on the operating
system, but may be of order 1000.

Session key expire after two hours. If its session key is expired, the client is forced to repeat the
authentication protocol to set up a fresh session key.

Incoming messages are signed by the client. On receipt, yule will:

1. check the signature,

2. accept the message if the signature can be verified, otherwise discard it and issue an error message,

3. discard the clients signature,

4. log the message, and the client's hostname, to the console and the log file, and

5. add its own signature to the log file entry.

2. Important installation notes
As of version 1.7.0, yule will always drop root privileges after startup and initialization. You can use
a privileged port (port number below 1024), because setting up the listening socket will occur as long
as yule still has root privileges.

72

Configuring yule, the log server

There are some special considerations that need to be taken into account when setting up an installation
of yule. In particular:

The unprivileged user By default, configure will check (in this order) for the existance
of a user yule, daemon, or nobody, and use the first match.

You can override this with the option configure --enable-iden-
tity= user . The user does not need to exist already; the install
script knows how to create a new user (on Linux, FreeBSD,
NetBSD, Solaris, HP-UX, OSF1).

After successful installation, you will be asked to run make
install-user in order to: (i) create the user that you specified to
configure if it does not exist already (make install-user will
check for this), and (ii) chown/chmod some directories.

After running make install and make install-user , you should
have a sane setup.

Logfile directory The system logfile directory usually requires root privileges to
write there (otherwise log files may easily get corrupted ...).
To enable yule to write the log file and the HTML status file,
a (sub-)directory should be used that is owned by yule. The
configure script and the Makefile will do that automatically
with the default layout (i.e. a directory /var/log/yule
will be created).

Data files The data file directory is now owned by root and world read-
able by default. If you chown it to a suitable group for the un-
privileged yule user, you can make it group readable only. Note
that it is not required, and weakens the security, if the data file
directory is writeable for the server.

GnuPG signed configuration file The unprivileged yule user must have a .gnupg subdirectory
in its home directory, holding the public keyring with the key
to verify the signature.

PID file The PID file is written with before dropping root privileges.
Therefore yule will not be able to overwrite it later (which is a
GoodThing), or remove it upon exit (it will usually be able to
recognize and handle a stale PID file on startup). Still, it may
be a good idea to remove it after stopping yule. The provided
start/stop scripts for various architectures will handle this.

3. Registering a client
Clients must be registered with yule to make a connection. Connection attempts by unknown clients
will be rejected. The respective section in the server configuration file looks like:

 [Clients]
 #
 # A client
 #
 Client=HOSTNAME_CLIENT1@salt1@verifier1
 #
 # another one
 #

73

Configuring yule, the log server

 Client=HOSTNAME_CLIENT2@salt2@verifier2
 #

These entries have to be computed in the following way:

1. Choose a password(16 chars hexadecimal, i.e. only 0 - 9, a - f, A - F allowed. To generate a random
password, you may use:

 sh$ yule --gen-password

2. Use the program samhain_setpwd to reset the password in the compiled client binary (that is,
samhain, not yule) to the one you have chosen. samhain_setpwd takes three arguments: (1) the
binary name, (2) an extension to append to the new binary, and (3) the password. It will read the
executable binary (argument 1), insert the password (argument 3), and write a modified binary
with the specified extension (argument 2). Run samhain_setpwd without arguments for usage
information. Example:

 sh$ samhain_setpwd samhain EXT 0123456789ABCDEF

3. Use the server's convenience function '-P' to create a registration entry. Example:

 sh$ yule -P 0123456789ABCDEF

4. The output will look like:

Client=HOSTNAME@salt@verifier

You now have to replace HOSTNAME with the fully qualified domain name of the host on which
the client should run (exception: if the server cannot determine the fully qualified hostname, you
may need to use the numerical address instead. You will see the problem in a 'Connection refused'
message from the server).

5. Put the registration entry into the servers's configuration file, under the section heading
[Clients](see Section 3 (p. 73)). You need to send SIGHUP to the server for the new entry
to take effect.

6. Repeat steps (1) -- (5) for any number of clients you need (actually, you need a registration entry
for each client's host, but you don't neccesarily need different passwords for each client. I.e. you
may skip steps (1) -- (3)).

If you have a default directory layout, a [Clients] section right at the end of the server config file, and
your client is client.mydomain.com, then you could e.g. do:

 bash$ PASSWD=`yule --gen-password`
 bash$ samhain_setpwd samhain new $PASSWD
 bash$ scp samhain.new root@client.mydomain.com:/usr/local/sbin/samhain
 bash$ ENTRY=`yule -P $PASSWD | sed s%HOSTNAME%client.mydomain.com%`
 bash$ echo $ENTRY >>/etc/yulerc
 bash$ kill -HUP `cat /var/run/yule.pid`

74

Configuring yule, the log server

4. Enabling logging to the server
If the client is properly registered with the server, all you need to do is to set an appropriate threshold
for remote logging in the client's configuration file, and give the IP address of the server (if not already
compiled in). Of course, the client must be compiled with the --enable-network=client switch.

Example for client configuration:

 [Log]
 #
 # Threshold for forwarding to the log server
 #
 ExportSeverity=crit
 [Misc]
 SetLogServer=IP address

Example for server configuration:

 [Clients]
 #
 # Register a client to allow it to connect
 #
 Client=client.mydomain.com@salt@verifier

5. Enabling baseline database / configuration
file download from the server

A significant advantage of samhain is the option to store baseline databases and configuration files
on the central log server (yule), from where they can be downloaded by clients upons startup. In
order to use this option, clients must be configured to retrieve these files from the server rather than
from the local filesystem.

Tip

Obviously, retrieving the configuration file from the log server requires that the IP
address of the log server is compiled in, using the option ./configure --with-logserv-
er=HOST .

Downloaded files are written to a temporary file that is created in the home directory of the effective
user (usually root. The filename is chosen at random, the file is opened for writing after checking
that it does not exist already, and immediately thereafter unlinked. Thus the name of the file will be
deleted from the filesystem, but the file itself will remain in existence until the file descriptor referring
it is closed (see man unlink), or the process exits (on exit, all open file descriptors belonging to the
process are closed).

5.1. Configuration file
If the compiled-in path to the configuration file begins with the special value ``REQ_FROM_SERV-
ER'', the client will request to download the configuration file from yule (i.e. from the server).

If ``REQ_FROM_SERVER'' is followed by a path, the client will use the path following ``RE-
Q_FROM_SERVER'' as a fallback if (and only if) it is initializing the database. This is a convenience
feature to allow initializing the database(s) before the client is registered with the server.

75

Configuring yule, the log server

Example: ./configure --with-config-file=REQ_FROM_SERVER/etc/conf.samhain In this case,
the client will request to download the configuration file from the server. If the connection to the
server fails, it will exit on error if run in 'check' mode, but fallback to /etc/conf.samhain as its
configuration file, if run in 'init' mode.

Note

For obvious security reasons, the client cannot specify the path to the configuration file
on the server side. The server will lookup the configuration file using only the hostname
of the client and the compiled-in path for the 'localstatedir' (see below). The default for
'localstatedir' is /var.

The server will search for the configuration file to send in the following order of priority (paths are
explained in Section 6 (p. 112)). CLIENTNAME is the hostname of the client's host, as listed in
the server's config file in the Clients section:

1. localstatedir/lib/yule/rc.CLIENTNAME

2. localstatedir/lib/yule/rc

5.2. Database file
If the compiled-in path to the database file begins with the special value ``REQ_FROM_SERVER'',
the client will request to download the database file from yule (i.e. from the server).

CAVEAT

``REQ_FROM_SERVER'' must be followed by a path that will be used for writing the
database file when initializing. Upon initialization, the database is always written to a
local file, and must be copied with scp to the server (the client cannot upload the database
file to the server, as this would open a security hole).

Example: --with-data-file=REQ_FROM_SERVER/var/lib/samhain/data.samhain In this case,
the client will request to download the database file from the server if checking, and will create a local
database file /var/lib/samhain/data.samhain if initializing. You have to use scp to copy
the file signature database to the server then.

Note

For obvious security reasons, the client cannot specify the path to the database file on the
server side. The server will lookup the databse file using only the hostname of the client
and the compiled-in path for the 'localstatedir' (see below). The default for 'localstatedir'
is /var.

The server will search for the database file to send in the following order of priority (see Section 6
(p. 112)). CLIENTNAME is the hostname of the client's host, as listed in the server's config file
in the Clients section:

1. localstatedir/lib/yule/file.CLIENTNAME

2. localstatedir/lib/yule/file

6. Rules for logging of client messages
As the log server may receive quite a large number of log messages from clients (depending on the
number of clients and their threshold settings), client messages are treated specially and by default are
only logged to facilities suitable for bulk logging: console, log file, relational database (if enabled),
and external (if enabled).

76

Configuring yule, the log server

To override this behavior, you can set the option UseClientSeverity= yes in the [Misc] section of
the configuration file. In that case, the client message severity is used, and client messages are treated
just like local messages (i.e. like those from the server itself).

If you also want to filter by message class, there is also an option UseClientClass= yes

All client messages are recorded in the main log file by default. However, it is possible to use separate
log files for individual clients. This can be enabled with UseSeparateLogs= yes/no in the Misc
section of the server configuration file. No locking will be performed for such separate client log files
(only one instance of the server can listen on the TCP port, thus there will be no concurrent access).

7. Detecting 'dead' clients
It is possible to set a time limit for the maximum time between two consecutive messages of a client
(option SetClientTimeLimit in the [Misc] section of the configuration file). If the time limit is ex-
ceeded without a message from the client, the server will issue a warning. The default is 86400 seconds
(one day); specifying a value of 0 will switch off this option.

You may want to set ExportSeverity = mark (or any lower threshold) in the client configuration file
in order to log timestamp ('heartbeat') messages to the server.

8. The HTML server status page
yule writes the current status to a HTML file. The default name of this file is samhain.html, and
by default it is placed in /var/log.

The file contains a header with the current status of the server (starting time, current time, open con-
nections, total connections since start), and a table that lists the status of all registered clients.

There are a number of pre-defined events that may occur for a client:

Inactive The client has not connected since server startup.

Started The client has started. This message may be missing if the client was already
running at server startup.

Exited The client has exited.

Message The client has sent a message.

File transfer The client has fetched a file from the server.

ILLEGAL Startup without prior exit. May indicate a preceding abnormal termination.

PANIC The client has encountered a fatal error condition.

FAILED An unsuccessful attempt to set up a session key or transfer a message.

POLICY The client has discovered a policy violation.

TIME_EXCEED-
ED

No message (e.g. timestamp) has been received from the client for a defined
amount of time (default 1 day, option SetClientTimeLimit).

For each client, the latest event of each given type is listed. Events are sorted by time. Events that
have not occurred (yet) are not listed.

It is possible to specify templates for (i) the file header, (ii) a single table entry, and (iii) the file end.
Templates must be named head.html, entry.html, and foot.html, respectively, and must
be located in the data directory (i.e. localstatedir/lib/yule/, see Section 6 (p. 112)).
The distribution package includes two sample files head.html and foot.html.

77

Configuring yule, the log server

The following replacements will be made in the head template:

Placeholder Significance

%T Current time.

%S Startup time.

%L Time of last connection.

%O Open connections.

%A Total connections since startup.

%M Maximum simultaneous connections.

The following replacements will be made in the entry template:

Placeholder Significance

%H Host name.

%S Event.

%T Time of event.

Tip

A literal '%' in the HTML output must be represented by a '% ' ('%' followed by space)
in the template.

9. Chroot
As of version 1.7.0, yule is able to chroot itself after startup and initialization, either by using the
command line option

 bash$ yule --chroot=/chrootdir

or by requesting it in the configuration file:

 [Misc]
 SetChrootDir=path

In order to prepare for the chroot jail, the following is required:

Tip

In the scripts subdirectory of the source directory there is a script chroot.sh to
perform steps (4) and (5) (only for Linux).

1. Compile normally. Make sure you use either dev/random(default if existing) or EGD (Entropy
Gathering Daemon) for the entropy device. If dev/random does not exist, the default is the 'stan-
dard unix entropy gatherer', which uses the output of many system commands, and therefore is not
suitable within a chroot jail.

2. Install with the command(s):

 bash$ make DESTDIR=/chrootdir install

78

Configuring yule, the log server

 bash$ make DESTDIR=/chrootdir install-user
 bash$ make install-boot

3. Fix the path to the yule binary in the runlevel start/stop script installed by the last command.

4. Prepare the chroot environment. Basically, you need under /chrootdir

(a) an entropy device, either dev/random, dev/urandom, or an EGD (Entropy Gathering Dae-
mon) socket,

(b) minimum etc/passwd, etc/group files, at least with entries for root and the unprivileged
yule user. Replace passwords with an asterix, and make sure the homedirectory of the unprivileged
yule user is correct within the chroot jail.

(c) files required for DNS: etc/nsswitch.conf, etc/hosts, etc/host.conf, etc/
resolv.conf, etc/services, etc/protocols.

5. Create a symlink /etc/yulerc to /chrootdir/etc/yulerc (no, it will not work the
other way round).

Because yule chroots after startup, there is no need to copy shared libraries into the chroot jail. They
will be loaded upon startup, before the chroot() occurs.

Tip

If you are using syslog logging, you need a dev/log socket in the chroot jail. Modern
syslog incarnations will allow you to have an additional socket using the command:

 bash$ syslogd -a /chrootdir/dev/log

Tip

If you are using a GnuPG- or signify-signed configuration, you will need a working copy
of gpg or signify, respectively, in the chroot jail.

10. Restrict access with libwrap (tcp wrap-
pers)

As of version 1.8.0, yule can be build with support for libwrap, i.e. Wietse Venema's tcp wrappers
libraries. To enable this, use the configure option --with-libwrap.

You can then restrict access to yule with appropriate entries in the /etc/hosts.allow and/or /
etc/hosts.deny files.

Note

If you use the configure option --enable-install-name=NAME, then yule will be installed
as 'NAME', and this is what you then need to use as the daemons name in the /etc/
hosts.allow and/or /etc/hosts.deny files.

11. Sending commands to clients
It is generally not possible to send commands to clients, because the client does not listen on the net-
work (the client needs root privileges to perform its tasks, and you don't want a root network daemon).

79

Configuring yule, the log server

However, it is possible to send a command if and when a client connects to deliver a message. As
of version 1.8.0, clients use a new version of the client/server protocol, which includes a set of pre-
defined commands that are understood by the client. Currently implemented are RELOAD to reload
the configuration, SCAN to request a file system check (ouside the regular schedule), and STOP to
terminate the client.

Pre-1.8.0 clients, or clients build with the (optional) old protocol version, will simply ignore such
commands.

11.1. Communicating with the server
As of version 1.8.0, yule can send a command to a client if and when a client connects to deliver a
message, e.g. a timestamp message (clients are not listening on the network, and thus commands can
only be sent together with the confirmation when a message is received).

Of course the server needs to know which (if any) command to send. Therefore it can open a unix
domain socket upon startup (in the same directory as the PID file). Opening this command interface
must be requested explicitely with the option SetUseSocket= yes (in the [Misc] section).

A separate application yulectl is compiled together with the server that provides a command-line in-
terface to access this facility. Use yulectl -h for help.

11.2. Authenticating to the server
There are two methods to authenticate to the server. If supported by the OS, authentication is done by
passing the credentials of the socket peer to the server (this is a special feature of unix domain sockets),
and requiring the UID of the the socket peer (i.e. the user using the yulectl program) to match a UID
as set with the SetSocketAllowUid= UID option (default is 0, i.e. only root can use the interface).

Note

If passing credentials over the socket is supported by the OS, it is not possible to fake
these credentials - they are supplied by the kernel. Therefore, the server can rely on the
fact that the user process writing to the socket has indeed the UID passed via the socket.
Thus, the access rights to the socket are basically not important (on some systems, they
are not even recognized/respected at all).

As of version 1.8.12, if (and only if) passing credentials over the socket is not supported, you can
specify a password with the SetSocketPassword= password option. The password must be 14 char-
acters or less, and must not include the '@' character.

Of course you must supply the password to yulectl if you want to communicate with the server. To do
so, create a file .yulectl_cred in your home directory, and place the password there.

Note

Password authentication is not supported if the OS supports the aforementioned method.
You can use yule -v to find out which of the two authentication methods is supported.

12. Syslog logging
yule (version 1.2.8+) can listen on port 514/udp to collect reports from syslog clients. This must be
enabled by using the --enable-udp configure option when compiling. In addition, in the Misc section
of the configuration file, you must set the option SetUDPActive= yes .

This option requires to run yule either as root, or as SUID root. For security, yule will drop root
privileges irrevocably immediately after binding to port 514/udp. It will assume the credentials of
some compiled-in user. The default is 'yule', 'daemon', or 'nobody' (i.e. the first of these that exists on

80

Configuring yule, the log server

your system). You can override this with the --enable-identity= USER option. Note that each daemon
should have its own user/group, such that an exploit will not give write access to files owned by other
daemons.

13. Server-to-server relay
As of version 2.2.0, it is possible to relay messages from one yule server to another. This is implement-
ed in the same way as client-to-server connectivity, i.e. the relaying server and the endpoint server must
be set up in the same way as a samhain client and a server, respectively (see Section 3 (p. 73)).

14. Performance tuning
If connections time out because of slow network, you can raise the timeout with SetConnectionTime-
out= seconds (the default is 900 seconds).

Even without tweaking, the server can probably handle some 100 connections per second on a 500Mhz
i686. Depending on the verbosity of the logging that you wish, this should suffice even for some
thousand clients.

Almost all time is spent (i) in the HMAC function that computes the message signatures, and (ii) if
you do not have the gmp (GNU MP) multiple precision library, in the multiple precision arithmetic
library (for SRP authentication).

The reason for (ii) is that samhain / yule will use a simple, portable, but not very efficient MP library
that is included in the source code, if gmp is not present on your system.

To improve performance, you can:

• install gmp, remove the file config.cache in the source directory (if you have run configure before),
and then run configure and make again. The configure script should automatically detect the gmp
library and link against it.

• use a simple keyed hash (HASH-TIGER), which will compute signatures as HASH(message key)
instead of the HMAC (HMAC-TIGER). This will save two of the three hash computations required
for a HMAC signature.

CAVEAT

Make sure you use the same signature type on server and client !

 [Misc]
 #
 # use simple keyed hash for message signatures
 # Make sure you set this both for client and server
 #
 MACType=HASH-TIGER

• build a static binary (use the --enable-static switch for configure). Static binaries are faster, and
also more secure, because they cannot be subverted via libraries they depend upon. (However, if
there is a bug in one of the compiled-in libraries, you'd need to re-compile a static executable after
an update of the library).

Note

Some functionality may not be available with static binaries, in particular some name
services (NIS, LDAP), the portmap service (used for the port check), and the support

81

Configuring yule, the log server

for the Linux audit daemon and SQL databases. On some operating systems (e.g. So-
laris) static compiling may not be possible at all.

• change the compiler switches to optimize more aggressively.

• if on a commercial UNIX, check whether the native compiler produces faster code than gcc (you
need an ANSI C compiler). The configure script honours CC (compiler) and CFLAGS environment
variables.

82

Chapter 7. Hooks for External
Programs

samhain provides several hooks for external programs for (re-)processing the audit trail, including
pipes, a System V message queue, and the option to call external programs.

1. Pipes
It is possible to use named pipes as 'console' device(s) (samhain supports up to two console devices,
both of which may be named pipes. You can set the device path at compile time (see Section 6 (p.
112)), and/or in the configuration file (see Section 8 (p. 29)).

Pipe full

(Since version 4.0) samhain will do a nonblocking write. If the pipe is full, the write will
silently fail and the message will be lost.

2. System V message queue
It is possible to have a SystemV IPC message queue (which is definitely more elegant than named
pipes) as additional 'console' device. You need to compile with --enable-message-queue= MODE and
use the option MessageQueueActive= T/F .

The default mode is 0700 (rwx------), but this is a compile option (message queues are kernel-resident,
but have access permissions like files).

In your code, to get the System V IPC key for the message queue, use ftok("localstatedir/lib/
samhain", '#'); (since Samhain Version 4.0) or ftok("/tmp", '#'); (previous versions). Here, lo-
calstatedir/lib/samhain is the directory where samhain writes the database upon initialisation,
i.e. /var/lib/samhain by default.

Messages logged / Queue full

The message queue is treated as an additional 'console' device, i.e. the same messages
go there that go to the console.

(Since version 4.0) If the queue is full, the oldest message(s) will get deleted until there
is enough free space for the current message. I.e. the queue will behave like a ring buffer.

3. Calling external programs
samhain may invoke external programs or scripts in order to implement logging capabilities that are not
supported by samhain itself (e.g. pager support). This section provides an overview of this capability.

External programs/scripts invoked for logging will receive the formatted log message on stdin. The
program should expect that stdout and stderr are closed, and that the working directory is the root
directory.

Each external program must be defined in the configuration file, in a section starting with the header
[External] . In addition, ExternalSeverity must be set to an appropriate threshold in the section [Log] .

Each program definition starts with the line

OpenCommand= /full/path

83

Hooks for External Programs

Options for the program may follow. The definition of an external program is ended (a) when ex-
plicitely terminated with the line CloseCommand , (b) when the section ends, or (c) when another
OpenCommand= /full/path line for the next command is encountered.

Environment variables

By default, the environment is limited to the TZ (timezone) variable. If you need oth-
er variables (e.g. LD_LIBRARY_PATH), you can set them using the Setenviron=
KEY=value option (see below).

• There are several places in samhain where external programs may be called. Each such place is
identified by a type. Currently, valid types are:

• log— An external logging facility, which is handled like other logging facilities. The program
will receive the logged message on stdin, followed by a newline, followed by the string [EOF]
and another newline.

• srv— Executed by the server, whenever the status of a client, as displayed in the HTML status
table, has changed. The program will receive the client hostname, the timestamp, and the new
status, followed by a newline, followed by [EOF] and another newline.

• Any number of external programs may be defined in the configuration file. Each external program
has a type, which is log by default. Whenever external programs are called, all programs of the
appropriate type are executed. The type can be set with SetType= type

• External programs must be on a trusted path (see Section 10.1 (p. 9)), i.e. must not be writeable
by untrusted users.

• For enhanced security, the (192-bit TIGER) checksum of the external program/script may be spec-
ified in the configuration file: SetChecksum= checksum (one string, no blanks in checksum)

• Command line arguments and environment variables for each external program are configurable
(the default is no command line arguments, and a clean environment containing only the TZ (time-
zone) variable:

SetCommandline= full_command_line (full command line starting with the name of the
program)

Setenviron= KEY=value

• The user whose credentials shall be used, can be specified: SetCredentials= username

• Some filters are available to make the execution of an external program dependent on the message
content:

SetFilterNot= list If any regular expression in 'list' matches the message, the program is not
executed, else

SetFilterAnd= list if any regular expression in 'list' is not matching the message, the program
is not executed, else

SetFilterOr= list if none of the regular expressions in 'list' matches the message, the program
is not executed.

For all filters, list items can be quoted with single or double quotes. It is also possible to use each
filter option multiple times, although this does not affect the order (not, and, or) in which filters
are evaluated. A maximum of 32 filter patterns for each of (not, and. or) are supported per defined
external program. Any filter not defined is not evaluated.

• It is possible to set a 'deadtime'. Within that 'deadtime', the respective external program will be
executed only once (if triggered): SetDeadtime= seconds

84

Hooks for External Programs

3.1. Example setup for paging
The distribution contains two example perl scripts for paging and SMS messages (example_pager.pl,
example_sms.pl). The paging script will page via a web CGI script at www.pagemart.com (obviously
will work only for their pagers), the SMS script is for any German 'free SMS' web site that outsources
free SMS to pitcom (with a suitable query on Google you can find such sites; you can then inspect the
HTML form to set proper values for the required form variables.)

If you know some Perl, both scripts can be adapted fairly easily to other providers. Below is an example
setup for calling example_pager.pl as an external logging facility.

 [External]
 # start definition of first external program
 OpenCommand=/usr/local/bin/example_pager.pl
 SetType=log
 # arguments
 SetCommandline=example_pager.pl pager_id
 # environment
 SetEnviron=HOME=/home/moses
 SetEnviron=PATH=/bin:/usr/bin:/usr/local/bin
 # checksum
 SetChecksum=FCBD3377B65F92F1701AFEEF3B5E8A80ED4936FD0D172C84
 # credentials
 SetCredentials=moses
 # filter
 SetFilterOr=POLICY
 # deadtime
 SetDeadtime=3600
 #Optional
 CloseCommand

85

Chapter 8. Change Control Process
Integration

samhain 4.0 introduces a set of new features to allow seamless integration with an existing change
control process. This feature set has been drafted as the result of a workshop, and is designed to meet
some key criteria:

1. The whole procedure can be run in an automated way, i.e. it can be executed by scripts and without
human intervention, once a list of affected files is available. It is expected that the change control
process will yield the list of affected files from the development or quality assurance stage.

2. The feature set provided should be rather generic and not tied to any particular change control
software.

3. Immediately before a change is implemented, the affected files can be tested for their integrity. I.e.
it can be verified that the system is in a known-good state before the change is put into effect.

4. After a change is implemented, the baseline, i.e. the database of known-good file signatures, can
be updated.

5. The approval of the change(s) performed can be securely communicated to the running Samhain
daemon on the affected machine(s), such that a subsequent file integrity check will raise no alerts.

1. Use cases
The following list shows the use cases that were considered, and how they may be handled.

1.1. Case I: Machine taken offline for a large patch
This case is best handled by a comple re-initialisation of the baseline database. The running Samhain
daemon performs an on-demand file system scan immediately before the machine is taken offline to
ensure a valid state, the database will be initialized after the patch has completed, and the Samhain
daemon will re-start when the machine goes online again.

1. Before taking the machine offline, a SIGTTOU signal is sent to the Samhain daemon to request
a file check:

 sh# kill -s TTOU $(cat /var/run/samhain.pid)

It is possible to perform a wait-on-completion (with an optional timeout) that provides an exit status
to indicate whether the file system scan found any inconsistencies:

 sh# samhain -w <timeout>

2. The machine is taken offline for patching (e.g. by switching to another runlevel), and Samhain is
shut down.

3. After the patch, a new baseline is initialized:

 sh# samhain -t init

86

Change Control Process Integration

4. The new baseline is transferred to the server and the Samhain daemon restarts when the machine
is taken online again.

5. There may be no feedback between different parts of the process that implements the change, thus
the new baseline may not be available yet at restart. Therefore Samhain has an option to delay the
download of the baseline at startup:

 # Delay database download at startup by N seconds
 StartupLoadDelay = N

1.2. Case II: Installation of a new package
In this case, because the package is not installed yet a "pre-flight" scan may be deemed unneccessary.
After installation of the package, a DeltaDB (delta database) containing the added files will be gener-
ated and transferred to the server. There, it will be merged into the existing baseline database.

The approval of the file system changes will be done by the server asking the client to download
the DeltaDB. For security, there is no client-side mechanism to trigger an approval of the file system
changes.

1. The list of files (package content + files affected by pre-/postinstall scripts) is generated in the QA
stage.

2. The package is installed.

3. Based on the list of files, a DeltaDB (delta database) is generated:

 sh# samhain --outfile <DeltaDB> --create-database <file_list>

File list

One pathname per line, optionally preceded by a '+' (plus) sign which, if present,
indicates that the content of the file should be stored. The configuration file will NOT
be read, and the policy recorded in the baseline database will be ReadOnly.

4. The DeltaDB is transferred to the server data directory, renamed with a fixed scheme of the form
<baseline_file>.<UUID>, and merged with the baseline database. The merging function is provided
as part of the Beltane II software:

 sh# beltane_update --merge <UUID> --update <baseline_file>

5. The Samhain server (yule) is advised to inform the Samhain client that a DeltaDB of approved
changes is available for download:

 sh# yulectl -c DELTA:<UUID> <client_fqdn>

Location and naming scheme

The DeltaDB must be named file.client_fqdn.UUID and must be located in the
yule data directory, i.e. the same directory where the baseline database file.clien-
t_fqdn is located. The client will only ask for the UUID. Similar to the baseline

87

Change Control Process Integration

database, the pathname of the file is constructed by the server, using the client FQDN
and the requested UUID.

6. The client receives the UUID and requests the DeltaDB from the server. In case of a failure, re-
trying is controlled by the following two configuration options:

 # Maximum retry count
 SetDeltaRetryCount = N
 # Time in seconds between re-tries
 SetDeltaRetryInterval = N

1.3. Case III: Configuration change / Package upgrade
This case differs from Case II insofar as there are already installed files, and therefore it is desirable
to verify the integrity of those files before the change is put into effect. To perform this check, on the
server a PartialDB (partial database, containing only data for affected files) is generated from the full
baseline database. This PartialDB is then transferred to the client and used to perform a verification
scan.

If the affected files are found to be in a consistent state, the procedure continues as in Case II then.

1. The list of affected files is generated in the QA stage.

2. On the Samhain server, a PartialDB (partial baseline database) for the affected files is generated
from the complete baseline:

 sh# samhain --outfile <PartialDB> --list-filter <list_file> --binary -d <baseline_file>

3. The PartialDB is transferred to the client.

4. The integrity of the affected files is verified before the change is implemented (success or failure
indicated by exit status):

 sh# samhain --verify-database <PartialDB>

5. After successful verification, the process continues as in Case II.

2. Limitations
The --verify-database requires that the policy under which a file is checked is stored in the baseline
database. (Note that this affects only this command. For the normal file system monitoring, the check-
ing policy is taken from the configuratiion file, not from the baseline database.) For this reason, the
format of the baseline database has changed in samhain 4.0. However, it is possible that the informa-
tion about the check policy becomes incorrect:

Added files If files are added to the filesystem after baseline initialisation
and reported by the client, the correct policy should be set. To
ensure this, the option ReportCheckflags = yes should be set
in the client configuration (for backward compatibility, this op-
tion is off by default.)

Merging a DeltaDB The DeltaDB is generated with the policy set to ReadOnly, to
collect a complete set of checksum and metadata. However, if

88

Change Control Process Integration

the actual policy should be less restrictive because some of that
data is allowed to change, a later --verify-database may result
in spurious failures.

Client configuration change If the configuration file for the client is changed to alter the
checking policy for the monitored files, it is recommended to
re-initialize the baseline.

89

Chapter 9. Additional Features —
Signed Configuration/Database Files

Both the configuration file (see Section 1 (p. 117)) and the database of file signatures (Section 8 (p.
51)) may always be cleartext signed by either GnuGP (gpg) or the OpenBSD signify tool (available
as signify-openbsd on Debian-based Linux flavours). The recommended options are:

gpg -a --clearsign --not-dash-escaped FILE

signify-openbsd -Se -s PRIVATE_KEY -m FILE

Tip

Please take note that on Linux, there exists a Perl application named signify which is
completely unrelated to the OpenBSD signify cryptographic application. For this reason,
on Debian-based Linux flavours, OpenBSD signify is named signify-openbsd. Do not
confuse signify-openbsd and signify on Linux. The latter is not what you want.

1. Compiling with support for signatures
1.1. If using GnuPG

If compiled with support for signatures, samhain will invoke gpg to verify the signature. To compile
with gpg support, use the option:

./configure --with-gpg=/full/path/to/gpg --with-fp=FINGERPRINT [--with-keyid=0x<hex
KeyID>]

• Note that gpg --fingerprint will only list the fingerprint of primary keys. If you are signing with
a secondary key, you need to repeat the '--fingerprint' option (i.e. run gpg gpg --fingerprint --
fingerprint) in order to obtain the fingerprint for the signing (secondary) key. (If you don't know
what a secondary key is, then this note is probably irrelevant for you.)

Example(spaces in FINGERPRINT do not matter): --with-fp="EF6C EF54 701A 0AFD B86A
F4C3 1AAD 26C8 0F57 1F6C"

• The optional argument --with-keyid=0x<hex KeyID> allows to specify a key ID, if there is more
than one key in your keyring. This is only used for the installation routine, and for configuring the
samhainadmin.pl convenience script (see below).

The installation routine ("[sudo] make install") will use the keyring of the user running it (in
~/.gnupg) for signing. At runtime, samhain will use the keyring of the runtime user (usually root)
for verification.

• samhain will check that the path to the gpg executable is writeable only by trusted users(see Sec-
tion 10.1 (p. 9)).

• The gpg program will be called without using the shell, with its full path (as compiled in), and with
an environment that is limited to the HOME variable.

If you need LD_LIBRARY_PATH, because your gpg executable relies on libraries that are not in
the search path of the loader, you can either (i) use a wrapper script to set the environment and exec
gpg (take care not to mess with file descriptors), (ii) update the system loader configuration file, or
(iii) recompile with loader paths (-Wl,-r<path> or -Wl,-R<path>).

• The public key must be in in the subdirectory HOME/.gnupg, where HOME is the home directory
of the effective user (usually root).

90

Additional Features — Signed
Configuration/Database Files

• From the command line, the signature must verify correctly with /path/to/gpg --status-fd 1 --verify
FILE when invoked by the effective user of samhain (usually root).

Tip

There is a Perl script samhainadmin.pl to facilitate some tasks related to the adminis-
tration of signed configuration and database files (see Section 3 (p. 92)).

When signing, the option --not-dash-escaped is recommended, because otherwise the
database might get corrupted. However, this implies that after a database update, you
must remove the old signature first, before re-signing the database. Without 'dash escap-
ing', gpg will not properly handle the old signature. See the tip just above.

As signatures on files are only useful as long as you can trust the gpg executable, the configure script
will determine the TIGER192 checksum of the gpg executable, which will be compiled into samhain.
In case of an error, you can specify the checksum by hand with:

--with-checksum=" CHECKSUM" — or — --without-checksum

CHECKSUM should be the checksum as printed by

gpg --load-extension tiger --print-md TIGER192 /path/to/gpg — or — samhain -H /path/
to/gpg (the full line of output, with spaces).

Example: --with-checksum="/usr/bin/gpg: 1C739B6A F768C949 FABEF313 5F0B37F5
22ED4A27 60D59664"

WARNING

Compiling in the GnuPG checksum will tie the samhain executable to the gpg executable.
If you upgrade GnuPG, you will need to re-compile samhain. If you don't like this, use
'--with-checksum=no' (or '--without-checksum' , which is equivalent).

1.2. If using signify
If compiled with support for signify signatures, samhain will invoke the signify executable to verify
the signature. To compile with signify support, use the option:

./configure --with-signify=/full/path/to/signify --with-pubkey-checksum=PUBKEY_CHECK-
SUM

• To determine the (TIGER192) checksum of the public key, you can either use samhain, by running
the command: samhain -H key.pub or you can use GnuPG with the command gpg --load-ex-
tension tiger --print-md TIGER192 key.pub You only need the (48 character long) checksum
part of the output, with or without whitespace stripped.

• samhain will check that the path to the signify executable is writeable only by trusted users(see
Section 10.1 (p. 9)).

• The signify executable will be called without using the shell, with its full path (as compiled in), and
with an environment that is limited to the HOME variable.

If you need LD_LIBRARY_PATH, because your gpg executable relies on libraries that are not in
the search path of the loader, you can either (i) use a wrapper script to set the environment and exec
signify (take care not to mess with file descriptors), (ii) update the system loader configuration file,
or (iii) recompile with loader paths (-Wl,-r<path> or -Wl,-R<path>).

• The public key must be in in the subdirectory HOME/.signify, where HOME is the home
directory of the effective user (usually root). It MUST be named INSTALL_NAME.pub, where

91

Additional Features — Signed
Configuration/Database Files

INSTALL_NAME is the name under which samhain is actually installed (defaults to 'yule' for the
server, 'samhain' otherwise, but configurable with the ./configure --install-name=NAME option.)

• From the command line, the signature must verify correctly with signify -Vem /dev/null -p ~/.sig-
nify/INSTALL_NAME.pub -x FILE when invoked by the effective user of samhain (usually root).

Tip

There is a Perl script samhainadmin.pl to facilitate some tasks related to the adminis-
tration of signed configuration and database files (see Section 3 (p. 92)).

As signatures on files are only useful as long as you can trust the signify executable, the configure
script will determine the TIGER192 checksum of the signify executable, which will be compiled into
samhain. In case of an error, you can specify the checksum by hand with:

--with-checksum=" CHECKSUM" — or — --without-checksum

CHECKSUM should be the checksum as printed by

gpg --load-extension tiger --print-md TIGER192 /path/to/gpg — or — samhain -H /path/
to/signify (the full line of output, with spaces).

Example: --with-checksum="/bin/signify-openbsd: 1C739B6A F768C949 FABEF313 5F0B37F5
22ED4A27 60D59664"

WARNING

Compiling in the signify checksum will tie the samhain executable to the signify exe-
cutable. If you upgrade signify, you will need to re-compile samhain. If you don't like
this, use '--with-checksum=no' (or '--without-checksum' , which is equivalent).

2. Installation
make install will sign the configuration file before installation.

 bash$./configure --with-gpg=/usr/bin/gpg \
 --with-fp=EF6CEF54701A0AFDB86AF4C31AAD26C80F571F6C
 bash$ make
 bash$ su
 bash$ make install
 bash$ samhain -t init
 bash$ gpg -a --clearsign /var/lib/samhain/samhain_file
 bash$ mv /var/lib/samhain/samhain_file.asc \
 /var/lib/samhain/samhain_file

samhain will report the signature key owner and the key fingerprint as obtained from gpg . If both files
are present and checked (i.e. when checking files against the database), both must be signed with the
same key. If the verification is successful, samhain will only report the signature on the configuration
file. If the verification fails, or the key for the configuration file is different from that of the database
file, an error message will result.

3. The samhainadmin script
In the subdirectory scripts/ of the source directory you will find a Perl script samhainadmin.pl
to facilitate some tasks related to the administration of signed configuration and database files (e.g.
examine/create/remove signatures). By default, this script is not installed.

92

Additional Features — Signed
Configuration/Database Files

bash$ samhainadmin.pl --help
 samhainadmin.pl { -m F | --create-cfgfile } [options] [in.cfgfile]
 Sign the configuration file. If in.cfgfile is given, sign it
 and install it as configuration file.

 samhainadmin.pl { -m f | --print-cfgfile } [options]
 Print the configuration file to stdout. Signatures are removed.

 samhainadmin.pl { -m D | --create-datafile } [options] [in.datafile]
 Sign the database file. If in.datafile is given, sign it
 and install it as database file.

 samhainadmin.pl { -m d | --print-datafile } [options]
 Print the database file to stdout. Signatures are removed. Use
 option --list to list files in database rather than printing the raw file.

 samhainadmin.pl { -m R | --remove-signature } [options] file1 [file2 ...]
 Remove cleartext signature from input file(s). The file
 is replaced by the non-signed file.

 samhainadmin.pl { -m E | --sign } [options] file1 [file2 ...]
 Sign file(s) with a cleartext signature. The file
 is replaced by the signed file.

 samhainadmin.pl { -m e | --examine } [options] file1 [file2 ...]
 Report signature status of file(s).

 samhainadmin.pl { -m G | --generate-keys } [options]
 Generate a PGP keypair to use for signing.

Options:
 -c cfgfile --cfgfile cfgfile
 Select an alternate configuration file.

 -d datafile --datafile datafile
 Select an alternate database file.

 -p passphrase --passphrase passphrase
 Set the passphrase for gpg. By default, gpg will ask.

 -s gnupg_homedir --secretkeyring gnupg_homedir
 Select an alternate gpg homedirectory to locate the secret keyring.
 Will use '/home/rainer/.gnupg/' by default.

 -k keyid --keyid keyid
 Select the keyid to use for signing.

 -l --list
 List the files in database rather than printing the raw file.

 -v --verbose
 Verbose output.

93

Chapter 10. Additional Features —
Stealth

If an intruder does not know that samhain is running, s/he will make no attempt to subvert it. Hence,
you may consider to run samhain in stealth mode, using some of the options discussed in this section.

1. Hiding the executable
samhain may be compiled with support for a stealth mode of operation, meaning that the program
can be run without any obvious trace of its presence on disk. The following compile-time options are
provided:

--enable-stealth= xor_val provides the following measures:

1. All embedded strings are obfuscated by XORing them with some value xor_val chosen at compile
time. The allowed range for xor_val is 128 to 255.

2. The messages in the log file are obfuscated by XORing them with xor_val. The built-in routine
for validating the log file (samhain -L /path/to/logfile) will handle this transparently. You may
specify as path an already existing binary file (e.g. an executable, or a JPEG image), to which the
log will get appended.

Tip

Use samhain -jL /path/to/logfile if you just want to view rather than verify the log-
file.

3. Strings in the database file are obfuscated by XORing them with xor_val. You may append the
database file to some binary file (e.g. an executable, or a JPEG image), if you like.

4. The configuration file must be steganographically hidden in a postscript image file (the image data
must be uncompressed). To create such a file from an existing image, you may use e.g. the pro-
gram convert , which is part of the ImageMagick package, such as convert +compress ima.jpg
ima.ps .

Tip

make install will do this automatically before installation.

To hide/extract the configuration data within/from the postscript file, a utility program
samhain_stealth is provided. Use it without options to get help.

Note

If --enable-stealth is used together with --with-gpg or --with-signify , then the config
file must be signed before hiding it (rather than signing the PS image file afterwards).

Furthermore, in the case of --with-signify, the config file MUST end with the '[EOF]'
marker, as the only content of the LAST line. If there are blank lines afterwards, they
will not get extracted, and the signature verification will fail.

--enable-micro-stealth= xor_val is like --enable-stealth , but uses a 'normal' configuration file
(not hidden steganographically).

--enable-nocl[=ARG] will disables command line parsing. The optional argument is a 'magic' word
that will enable reading command-line arguments from stdin. If the first command-line argument is

94

Additional Features — Stealth

not the 'magic' word, all command line arguments will be ignored. This allows to start the program
with completely arbitrary command-line arguments.

--enable-install-name= NAME will rename every installed file from samhain to NAME when doing a
make install (standalone/client installation), and likewise rename installed files from yule to NAME
when doing a make install (server installation). Also, the boot scripts will be updated accordingly.
Files created by samhain (e.g. the database) will also have samhain replaced by NAME in their file-
names.

Tip

The man pages have far too much specific information enabling an intruder to infer the
presence of samhain. There is no point in changing samhain to NAME there — this would
rather help an intruder to find out what NAME is. You probably want to avoid installing
man8/samhain.8 and man5/samhainrc.5.

1.1. Using kernel modules to hide samhain (Linux/ix86
only)

This feature has been removed as of samhain version 4.0, because it does not work anymore on modern
kernels due to enhanced kernel hardening.

2. Packing the executable
For even more stealthyness, it is possible to pack and encrypt the samhain executable. The packer
is just moderately effective, but portable. Note that the encryption key of course must be present in
the packed executable, thus this is no secure encryption, but rather is intended for obfuscation of the
executable. There is a make target for packing the samhain executable:

make samhain.pk

On execution, samhain.pk will unpack into a temporary file and execute this, passing along all com-
mand line arguments. The temporary file is created in /tmp, if the sticky bit is set on this directory,
and in /usr/bin otherwise. The filename is chosen at random, and the file is only opened if it does
not exist already (otherwise a new random filename will be tried). The file permission is set to 700.

The directory entry for the unpacked executable will be deleted after executing it, but on systems with
a /proc filesystem, the deleted entry may show up there. In particular, this is the case for Linux.
You should be aware that this may raise suspicion.

On Linux, the /proc filesystem is used to call the unpacked executable without a race condition, by
executing /proc/self/fd/NN, where NN is the file descriptor to which the unpacked executable
has been written. On other systems, the filename of the unpacked executable must be used, which
creates a race condition (the file may be modified between creation and execution).

The packed executable will not honour the SUID bit.

95

Chapter 11. Deployment to remote
hosts
1. Method A: The deployment system

samhain includes a system to facilitate deployment of the client to remote hosts. This system enables
you to: build and store binary packages for different operating systems, install them, create baseline
databases upon installation, update the server configuration, and maintain the client database required
by the beltane web-based console.

The system comprises a shell script deploy.sh that will be installed in the same directory as the
samhain/yule (by default, /usr/local/sbin), and a directory tree that will be installed below the
samhain/yule data directory (see Section 1.2 (p. 97)). The script and the directory tree can be re-
located freely. There is a configuration file ~/.deploy.conf that is created in the home directory
of the user when deploy.sh is run for the first time, where you can specify the default for the top level
directory of the system.

Note

In the following, an architecture is just a label for some group of hosts, typically a par-
ticular operating system (or some particular installation thereof). As long as you know
what the label means, you can choose it freely (alphanumeric + underscore).

The architecture for a build/install host (i.e. the association between a host and the ar-
chitecture-specific configuration data) is currently specified via a command-line option.

The system allows to use per-architecture customized build options, as well as per-host customized
runtime configuration files.

By default, the system will search for a sufficiently advanced incarnation of dialog to provide a nice
user interface. You can switch this off in favour of a plain console interface, if you prefer (or if you
want to run the script non-interactively).

To use this system, you must first install it with the command:

 sh$ make install-deploy

Installation tip

This system is somewhat tied to the server (yule). While you can safely install it later,
installing it together with the server will take care that the defaults are already correct.
Upon first invocation a configuration file ~/.deploy.conf will be written, where
you can modify the defaults settings.

Backward compatibility

The deployment system has been completely revised in version 2.0 of samhain. It will not
work with samhain versions below 2.0 (i.e. you cannot install them using this system).
However, the default location and format of the client database (used by the beltane web-
based console) has not changed.

Installing the new version of the deploy system will not overwrite the old version (de-
ploy.sh will be installed as deploy2.sh, if an old version is detected).

96

Deployment to remote hosts

1.1. Requirements
1. You must have compiled and installed the server (yule) on the local host where you use the deploy

system.

2. You must have installed the deployment system by using make install-deploy . This will install the
script deploy.sh into the sbindir(default /usr/local/sbin, but depends on your con-
figure options), and the deployment system into localstatedir/install_name/pro-
files(default /var/lib/yule/profiles, but depends on your configure options).

If you already have installed the deprecated version 1 deployment system, the script will be installed
as deploy2.sh.

3. For each architecture that you define, there must be (at least) one build host where development
tools (C compiler, make, strip) are available to build the client executable.

4. On each remote where you want to build or install, you should be able to login as root with ssh
using RSA authentication, such that ssh-agent can be used.

Tip

To use RSA-based authentication in a secure way, you may proceed as follows:

Use ssh-keygen to create a public/private key pair. Don't forget to set a passphrase for
the private key (ssh-keygen will ask for it).

Copy the public key (HOME/.ssh/identity.pub for the ssh protocol version 1,
HOME/.ssh/id_rsa.pub for ssh protocol version 2) to HOME/.ssh/autho-
rized_keys on any remote host where you want to log in. Do not copy the private
key HOME/.ssh/identity(ssh protocol version 1) or HOME/.ssh/id_rsa(ssh
protocol version 2) to any untrusted host !

On your central host, execute the commands (use "ssh-agent -c" if you are using a csh-
style shell):

 bash$ eval `ssh-agent -s`
 bash$ ssh-add

You can then ssh/scp without typing the passphrase again, until you exit the current shell.

1.2. Layout of the deployment system

(localstatedir)/(install_name)/profiles/
 |
 |
 |-- source ------------> (tarballs)
 |
 |-- configs -----------> (default configs)
 |
 |-- archpkg
 | |
 | |-- architecture -> (compiled package, setup script)
 |
 |-- hosts
 | |

97

Deployment to remote hosts

 | |-- hostname -----> (optional host-specific config)
 |
 |-- libexec -----------> (scripts)
 |
 |-- private -----------> (gpg key)
 |
 |-- tmp

1.2.1. The configs subdirectory

The configs subdirectory holds for each architecture at least two files (example files will be placed
there upon installation of the deployment system):

<architecture>.configure (required) The configure options for this architecture; one option per line,
each enclosed in single quotes.

If this file does not exist, it will be copied from gener-
ic.configure, which is created upon installation, and holds
(only) some minimum options.

<architecture>.samhainrc (re-
quired)

The default runtime configuration file for a client running on
this architecture. It is possible to override this on installation
with a file hosts/<hostname>/samhainrc.

<architecture>.preinstall (optional) The shell script to run before installing a client. Typically this
script would shutdown the running client, if there is one.

Defaults to libexec/preinstall.

<architecture>.postinstall (option-
al)

The shell script to run after installing a client. This script re-
ceives the client password as first (and only) argument, and typ-
ically would set the password in the client binary.

Defaults to libexec/postinstall.

<architecture>.initscript (optional) The shell script to initialize/update the baseline database file
installing a client.

Defaults to libexec/initscript.

1.2.2. The archpkg subdirectory

The archpkg directory holds for each architecture a subdirectory archpkg/<architecture>,
where compiled binary installer packages are stored.

For each build, up to four files will be stored: (a) the binary installer package samhain-<ver-
sion>.<format>, (b) the configure options used (configure-<version>.<format>), (c)
the samhain-install.sh script generated during the build (install-<version>.<format>),
and (only for packed executables) the client password set in the executable (PASSWD-<ver-
sion>.<format>).

1.3. Customizing the system

1.3.1. Setting default options

If you want to change the default options, you can set some of them via a configuration file ~/.de-
ploy.conf, which is created upon the first invocation of deploy.sh .

98

Deployment to remote hosts

1.3.2. Adding support for an architecture

To add support for another architecture <arch>, just create the two files <arch>.configure(con-
figure options) and <arch>.samhainrc(runtime configuration) in the configs directory of the
deployment system (see Section 1.2 (p. 97)).

Upon installation of the system, a template file generic.configure is created, which contains
the minimum options for a client.

1.3.3. Per-architecture pre-/postinstallation scripts

The default scripts for preinstallation (shutting down the running client) and postinstallation (set-
ting the client password, fixing the local configuration file), and the script for database initial-
ization are located in the libexec directory. You can override them for some (or all) archi-
tectures by storing architecture-specific files <arch>.preinstall, <arch>.postinstall,
<arch>.initscrip in the configs directory.

1.3.4. Per-host runtime configuration

If you want to override the runtime configuration file configs/<arch>.samhainrc on a
per-host basis, you need to store a host-specific runtime configuration file as hosts/<host-
name>/samhainrc, before you run deploy.sh install .

1.4. Using the deploy.sh script

Tip

When run for the first time, deploy.sh will create a configuration file ~/.de-
ploy.conf with some default configuration options. You may want to review this file.
Note that you can override all options there with command-line options; the configura-
tion file is just for convenience, if you don't like the defaults and don't want to type the
corresponding option on the command line every time.

deploy.sh can be invoked in three ways:

 bash$ deploy.sh --help
 This will provide a general overview.
 bash$ deploy.sh --help command
 This will provide help on a specific command
 (where command can be any of: 'clean', 'download', 'checksrc',
 'build', or 'install'.
 bash$ deploy.sh [options] command
 This will run 'command' with the specified options.

A log of the last run will be kept in tmp/logfile.lastrun

command can be any of the following:

info Provides information on installed clients, or available installer packages.

clean Removes source tarballs from the source subdirectory of the deploy system. Re-
moves unused installer packages from the archpkg/<arch> subdirectories of the
deploy system.

download Download a source tarball from the distribution site, verify the GnuPG signature (gpg
must be installed), and install it into the source subdirectory of the deploy system.
Requires one of: wget , curl , links , lynx , fetch , or lwp-request .

99

Deployment to remote hosts

checksrc Check the GnuPG signatures of available source tarballs in the source subdirectory
of the deploy system (gpg must be installed). Optionally delete tarballs with no/invalid
signature.

build Build a binary installer package for the chosen architecture from one of the tarballs in
the source subdirectory, and store it in the archpkg/<architecture> sub-
directory (which will be created if it does not exist yet). Requires a file <architec-
ture>.configure and a file <architecture>.samhainrc in the con-
figs subdirectory.

install Copy a pre-built binary package (built with deploy.sh build) to a remote host, stop the
client running there (if any), install the (new) client, update the server configuration
file and reload the server, initialize the file signature database and fetch it from the
remote host.

uninstall Remove a samhain client that was previously installed with deploy.sh install .

1.4.1. General options

-q | --quiet | --quiet=2 Produce output suitable for logging. Note that --quiet=2 implies --yes (see
below).

-s | --simulate Print what would be done, but do not actually change the system.

-y | --yes Assume yes as answer to all prompts and run non-interactively.

-o <file> | --logfile=<file> Specify an output file for messages that would go to stdout otherwise. Has
no effect on stderr (error messages).

-d <dialog> | --dialog=<dialog> Specify your preferred "dialog" clone (e.g. Xdialog). Use "no" to
force plain text.

1.5. deploy.sh info
This command will show information for hosts in the client database (default), or for available binary
installer packages.

1.5.1. Specific options

--packages Show information for available installer packages rather than for clients.

1.6. deploy.sh clean
This command will clean unused files: source tarballs in the source subdirectory, and unused
installer packages in the archpkg/>arch> subdirectories.

1.6.1. Specific options

There are no specific options for this command.

1.7. deploy.sh download
This command will download a source tarball from the distribution website, verify its GnuPG signa-
ture, and install it into the source subdirectory. This command requires that either wget or lynx
is in your PATH.

Manual installation of source

This note applies if you want to download source manually instead. Samhain distribution
tarballs contain exactly two files: first, a source tarball with the source code, and second,

100

Deployment to remote hosts

its GnuPG signature. For installation into the source subdirectory, the distribution
tarball must be unpacked, and both the source source tarball and its GnuPG signature
moved into the source subdirectory.

1.7.1. Specific options

--version=<version> The version of samhain to download. The default is "current" to download the
current version.

1.8. deploy.sh checksrc
This command will check the GnuPG signatures of source tarballs in the source subdirectory.

1.8.1. Specific options

--delete Delete source tarballs if PGP signature cannot be verified.

1.9. deploy.sh build
This command will create a temporary directory on a remote build host, copy the selected version of
the source there, build the selected format of the binary installer package, retrieve and store the package
into the archpkg/>architecture> subdirectory, and remove the temporary build directory.

For each build, up to four files will be stored: (a) the binary installer package samhain-<ver-
sion>.<format>, (b) the configure options used (configure-<version>.<format>), (c)
the samhain-install.sh script generated during the build (install-<version>.<format>),
and (only for packed executables) the client password set in the executable (PASSWD-<ver-
sion>.<format>).

Package formats

Note that the build host must provide the required tools if you want to build a package
for the native package manager (i.e. deb, rpm, tbz2, depot (HP-UX), or solaris pkg).
On RPM-based Linux distributions and Gentoo Linux, building of RPMs and tbz2s,
respectively, should just work. Debian requires additional packages for building debs.

The "run" binary package format does not require additional tools (it is a self-extracting
tar package based on the makeself application, which is included in the samhain distri-
bution). Use /bin/sh <package> --help for details.

1.9.1. Specific options

--host=<hostname> The build host.

--arch=<arch> The architecture to build for. This is used to get the "./configure" options from the
file configs/<arch>.configure, and to store the binary package into the directory archp-
kg/<arch>.

--version=<version> The version of samhain you want to build. Must be in the source subdirec-
tory.

--format=<run|rpm|deb|tbz2|depot|solaris-pkg> The format of the binary installer package. "run"
is a portable (Unix) package based on makeself, "deb" is a Debian package, "tbz2" is a binary Gentoo
Linux package, "rpm" is an RPM package, "depot" is an HP-UX binary package, and "solaris-pkg"
for Sun Solaris.

--packed=<password> Build a packed executable, and set the client password before packing.

101

Deployment to remote hosts

--user=<username> Login as <username> on the build host (defaults to root).

--add-path=<path> Append <path> to the PATH variable on the build host.

--tmpdir=<path> Temporary directory to use on the build host (defaults to /tmp).

1.10. deploy.sh install
This command will create a temporary directory on a remote host, copy the selected version of the
installer package, its corresponding samhain-install.sh script, the runtime configuration file, and the
preinstall, postinstall, initscripts scripts there. It will then:

(A) run the preinstall script on the client, which shuts down the running samhain daemon (if
there is any).

(B) install the binary installer package on the client.

(C) run the postinstall script on the client, which sets the client password (unless the binary
is packed), and replaces the default runtime configuration file with the proper one. The latter step is
required, because deploy.sh build builds from the pristine source, so the runtime configuration file
in the installer package is just the default one.

(D) copy the proper client runtime configuration file to the server data directory (as rc.<clien-
t_name>), fix the server configuration file, and restart the server (which will fail non-fatally if the
server is not running).

(E) run the initscript script on the client, which initializes (or updates) the baseline database.

(F) retrieve the baseline database, copy it to the server data directory (as file.<client_name>),
and remove the temporary directory on the client.

The runtime configuration file

If hosts/<hostname>/<arch>.samhainrc or hosts/<host-
name>/samhainrc exists, this will be used (in this order of preference), otherwise
configs/<arch>.samhainrc will be used. If the latter does not exist, the com-
mand will fail.

Transparent handling of particular build options

The build options '--enable-stealth=..' is handled by determining the argument from the
configure options that were used for the build, and preparing the runtime configuration
file appropriately. I.e., you should provide a 'normal', plain-text configuration file.

The build option '--with-nocl=..' is handled by determining the argument (which is re-
quired for database initialization) from the configure options that were used for the build,
and passing it to the initscript script.

1.10.1. Specific options

--host=<hostname> The host on which to install.

--group=<foobar> The group to which you want to assign that client (default: none). This is used by
the beltane web console to restrict access to users which are members of that group.

--arch=<arch> The architecture to install. This is used to get the installer package from the directory
archpkg/<arch>/.

--version=<version> The version of samhain you want to install. An installer package for this version
must exist in the archpkg/<arch>/ subdirectory.

102

Deployment to remote hosts

--format=<run|rpm|deb|tbz2|depot|solaris-pkg> The format of the binary installer package. "run"
is a portable (Unix) package based on makeself, "deb" is a Debian package, "tbz2" is a binary Gentoo
Linux package, "rpm" is an RPM package, "depot" is an HP-UX binary package, and "solaris-pkg"
for Sun Solaris.

--yule_exec=<path> Path to the yule executable.

--yule_conf=<path> Path to the yule configuration file.

--yule_data=<path> Path to the yule data directory.

--no-init Do not initialize the file signature (baseline) database (and consequentially, do not replace
the file.<host> file on server.

--no-rcfile Do not replace the rc.<host> file on server.

--no-start Do not start up the client after installation.

--local=<command> An optional command executed locally (i.e. on the server) twice (with the last
argument set to 'first' and 'second', respectively. First is after client config file installation (i.e. before
baseline database initialisation on the client), second is just before client startup. The script will be
called with the following five arguments:

1. hostname, i.e. the host on which to install,

2. arch, the architecture to install,

3. the directory where the deployment system is installed (default is /var/lib/yule/pro-
files, but depends on your configure options),

4. the server data directory where client configuration files and baseline databases are stored (default
is /var/lib/yule, but depends on your configure options),

5. the literal word 'first' if the script is called the first time during client installation, the literal word
'second' otherwise.

--tmpdir=<path> Temporary directory to use on the installation host (defaults to /tmp).

1.11. deploy.sh uninstall
This command will remove a samhain client that was previously installed by using deploy.sh install .

1.11.1. Specific options

--host=<hostname> The host on which to uninstall.

--tmpdir=<path> Temporary directory to use on this host (defaults to /tmp).

1.12. Usage notes

Warning

On Solaris, the PATH environment variable on the remote host (where you build or
deploy) may get set according to /etc/default/su, which may be different from what you
would expect (noted by S. Bailey).

2. Method B: The native package manager
Samhain provides an easy method to create custom binary packages with the native package manager
of your operating system. Basically, this works like:

103

Deployment to remote hosts

 bash$./configure [your preferred options]
 bash$ make rpm|deb|tbz2|depot|solaris-pkg

I.e. the binary package will be built with the compile options chosen in the preceding ./configure
command. Supported package formats are: rpm (e.g. Redhat, SuSE, ...), deb (Debian), tbz2 (Gentoo
Linux), depot (HP-UX), and solaris-pkg (Solaris).

Customization

The binary package will use the OS-specific samhainrc.OS configuration file from
the source directory, thus if you customize this, your package will contain your cus-
tomized version.

Baseline initialization

Upon installation, the package will not automatically initialize the baseline database, and
not start the daemon (though it will install the runlevel script to start upon boot).

Client packages

Samhain uses a password embedded in the binary for client/server authentication (for
details see Section 3 (p. 73)). To avoid the need for changing the binary after installation
(to set the password), it is possible to compile it in during package building (for RPM and
DEB packages only). To do so, export the password in the PASSWORD environment
variable before running the command make rpm or make deb .

Note

For reasons explained in Section 2 (p. 106) , we do not recommend to distribute binary
packages to third parties. On the other hand, it is perfectly ok to use a self-built binary
package to install/distribute samhain on your machine/within your own network.

2.1. Building an RPM

2.1.1. Custom RPM

If you run ./configure in the source directory, a spec file samhain.spec will be created from
samhain.spec.in. You can then use make rpm to create source and binary RPMs, or make srpm
to create just the source RPM.

The RPM will be located in /usr/src/(distribution-specific)/RPMS/i386. In-
stalling the RPM will not initialize the database automatically.

If anything fails during the build (and after installation has begun), just cd into the build directory
and do a make uninstall && make uninstall-boot . If building for a non-RedHat system, the error
messages will tell you which file paths in the spec file were incorrect.

2.1.2. Single-host

If you want to create an RPM for a single-host version of samhain without any fancy options, you
can just run

 bash$ rpmbuild -ta samhain-version.tar.gz

104

Deployment to remote hosts

on the tarball (there is a default spec file in there).

The RPM will be located in /usr/src/(distribution-specific)/RPMS/i386. In-
stalling the RPM will not initialize the baseline database automatically.

2.2. Building an HP-UX package
First run ./configure in the source directory with your preferred options, then do a make depot . The
result should be a package named samhain.depot, that can be installed with swinstall . Installing
the package will not initialize the baseline database automatically.

2.3. Building a Solaris package

Note

This is experimental and not well tested. Constructive feedback from experienced Solaris
administrators is welcome.

First run ./configure in the source directory with your preferred options, then do a make solaris-pkg
. The result should be a package named samhain.pkg.

2.4. Building a Gentoo Linux package
First run ./configure [your preferred options] in the source directory (reminder: use ./configure --
prefix=USR , NOT ./configure --prefix=/usr for standard paths), then do a make tbz2 . The .tbz2
package will be in /usr/portage/packages/All(this is just how Gentoo package building
works).

The Gentoo package thus created will not initialize the database automatically upon installation. The
.tbz2 package file will be in /usr/portage/packages/All(this is just how Gentoo package
building works).

Note

If you just want to install on your own system, rather than building a package for oth-
er machines, you can use the command make emerge (after running ./configure , of
course).

2.5. Building a Debian package
First run ./configure in the source directory (reminder: use ./configure --prefix=USR , NOT ./config-
ure --prefix=/usr for standard paths), then do a make deb . The .deb package and the correspond-
ing .dsc file will be in the directory above the source directory (this is just how Debian package
building works).

You will need the following additional Debian packages in order to build a Debian packages: apt-get
fakeroot , apt-get debmake , apt-get debhelper , apt-get devscripts , and apt-get cpio .

The Debian package thus created will not initialize the database automatically upon installation. It
will be located in the parent directory of the source directory (that's just the way the Debian build
system works).

105

Chapter 12. Security Design
1. Usage

It is recommended to:

• compile a static binary(not linked to shared libraries), using the configure option --enable-static
if possible. Some functionality may not be available with static binaries, in particular some name
services (NIS, LDAP), the portmap service (used for the port check), and the support for the Linux
audit daemon and SQL databases. On some operating systems (e.g. Solaris) static compiling may
not be possible at all.

The advantage is that a static binary is self-contained, i.e. if you are sure of its integrity (e.g. because
it is on a write-protected medium) then you don't need to worry about the integrity of system libraries
that dynamically linked binaries depend upon. The disadvantage is, if there is a bug in one of the
compiled-in libraries, then you need to re-compile the static binary after a library upgrade.

• strip the binary. This will help somewhat against intruders that try to run it under a debugger ...

• use signed database/configuration files.

• take a look at the stealth options- while 'security by obscurity' only is a very bad idea, it certainly
helps if an intruder does not know what defenses you have in place

• read the next chapter to understand how the integrity of the samhain executable can be verified.

1.1. Client security in a client/server system
In a client/server Samhain system, if an intruder has obtained root privileges on the server he may
modify configuration files that are stored on the server and downloaded by the clients. Thus, if the
client executes shell commands given in the configuration file (via the shell expansion option, or by
logging events to external commands specified in the configuration file), this may allow the intruder
to take over the clients as well.

As of version 2.8.5, there are two ways to protect against this scenario:

first, you can use signed configuration (and baseline database) files. The signature is checked on the
client, after downloading the configuration file from the server. It is thus not possible to make the
client perform any actions if the configuration file is not signed correctly (note that in versions before
2.8.5, the signature would be checked too late to prevent the attack).

second, you can just forego any execution of external programs by compiling with the options --dis-
able-shellexpand --disable-external-scripts . No shell expansion will be performed on configuration
file directives, and no logging to external programs will be supported.

2. Integrity of the samhain executable
Each samhain executable contains a compiled-in key, that is used when the signatures of emails and/
or logfile entries are verified. By default, a cryptographically strong random key is generated by the
configure script at compile time. Thus, each build is unique, and signature verification will fail if a
different build is used, except if the compiled-in key was set to a common value for both builds.

To set a user-defined key, there is an option

./configure --enable-base= B1,B2

where B1,B2 should be two integers in the range 0...2147483647.

106

Security Design

The key generated by configure is printed in the configure script's output. It is recommended that you
save this key and use it for further builds.

Whenever you try to verify the integrity of e-mails or log file entries, this compiled-in key is used (to
be more specific: the signature key is encrypted with a one-time pad generated from the message itself
and the compiled-in key). As a result, if executable B is used to verify the integrity of e-mails sent by
executable A, integrity verification will fail if the compiled-in keys of A and B do not match. This can
be used to check the integrity of A in a straightforward way (check e-mails on another host, using a
different executable compiled with the same key).

Obviously, this scheme can be broken, but it requires an intruder to disassemble/decompile and analyze
the existing samhain executable, rather than simply replace it with a precompiled trojan.

However, if you use a precompiled samhain executable (e.g. from a binary distribution), in principle
a prospective intruder could easily obtain a copy of the executable and analyze it in advance. This
will enable her/him to generate fake audit trails and/or generate a trojan for this particular binary
distribution.

For this reason, it is possible for the user to add more key material into the binary executable. This
is done with the command:

samhain --add-key= key@/path/to/samhain_executable

This will read the file /path/to/samhain_executable, add the key key, which can be a string
of arbitrary length, except that it should not contain a '@' (because it has a special meaning, separat-
ing key from path), and write the new binary to the location /path/to/executable.out(i.e.
with .out appended).

For Clarification

Please note that --add-key does not replace a compiled-in key but only adds to it. Integrity
verification depends on both the compiled-in and any added key material, and integrity
verification using different binaries will therefore only work if all were compiled with
the same key and had the same extra key material (if any) added in.

WARNING

Using a precompiled samhain executable from a binary package distribution is not rec-
ommended unless you add in key material as described above.

3. Client executable integrity
If you use samhain in a client/server setup, the client needs to authenticate to the server using a pass-
word that is located within the client executable, at one of several possible places (where the valid
place for your particular build is chosen at random at compile time). If the password is set, the alter-
native places are filled with random values.

Upon authentication to the server, client and server negotiate ephemeral keys for signing and encrypt-
ing further communication.

This implies that an intruder needs to analyse the running process to obtain knowledge of the sign-
ing/encryption keys in order to successfully fake a valid communication with the server, or she needs
to analyse/disassemble the executable in order to find the password.

4. The server
The server does not need root privileges. Therefore, if it is started with root privileges, it will drop
them irrevocably after startup. If a privileged port (below 1024) must be opened, the server will first
open it, then drop root, and only thereafter accept any connection on the port.

107

Security Design

The server can be chrooted, and actually has a config file option to do so by itself (which means that
you don't need to copy shared libraries into the chroot environment).

(If your clients are configured to download baseline databases and configuration files from the server:)
The server does not need write access to the directory where client baseline databases and configuration
files are stored, and it would be wise to deny such access (chown to some other user, and allow group
read access for the server).

5. General
Obviously, a security application should not open up security holes by itself. Therefore, an inportant
aspect in the development of samhain has been the security of the program itself. While samhain
comes with no warranty (see the license), much effort has been invested to identify security problems
and avoid them.

As the client requires root privileges, while the server does not, the clients has no open socket to listen
on the network. Consequently, all client/server connections are initiated by the client.

To avoid buffer overflows, only secure string handling functions are used to limit the amount of data
copied into a buffer to the size of the respective buffer (unless it is known in advance that the data
will fit into the buffer).

On startup, the timezone is saved, and all environment variables are set to zero thereafter. Signal
handlers, timers, and file creation mask are reset, and the core dump size is set to zero. If started as
daemon, all file descriptors are closed, and the first three streams are opened to /dev/null.

If external programs are used (in the entropy gatherer, if /dev/random is not available), they are
invoked directly (without using the shell), with the full path, and with a limited environment (by default
only the timezone). Privileged credentials are dropped before calling the external program.

With respect to its own files (configuration, database, the log file, and its lock), on access samhain
checks the complete path for write access by untrusted users. Some care has been taken to avoid race
conditions on file access as far as possible.

Critical information, including session keys and data read from files for computing checksums, is kept
in memory for which paging is disabled (if the operating system supports this). This way it is avoided
that such information is transfered to a persistent swap store medium, where it might be accessible
to unauthorized users.

Random numbers are generated from a pseudo-random number generator (PRNG) with a period of
2^88 (actually by mixing the output from three instances of the PRNG). The internal state of the
PRNG is seeded from a strong entropy source (if available, /dev/random is used, else lots of system
statistics is pooled and mixed with a hash function). The PRNG is re-seeded from the entropy source
at regular intervals (one hour).

Numbers generated from a PRNG can be predicted, if the internal state of the PRNG can be inferred.
To avoid this, the internal state of the PRNG is hidden by hashing the output with a hash function.

108

Appendix A. List of options for the
configure script
1. General

--with-rnd=egd/dev/unix/default The entropy gatherer to use. 'egd' is the Entropy Gathering Dae-
mon (EGD), 'dev' is /dev/random, 'unix' is the built-in Unix en-
tropy gatherer (similar to EGD), and 'default' will check for /
dev/random first, and use 'unix' as fallback.

--with-egd-socket=NAME The path to the EGD socket. Default is localstate-
dir/lib/samhain/entropy(see Section 6 (p. 112)).

--enable-identity=USER The username to use when dropping root privileges (default
nobody).

--with-sender=SENDER The username of the sender for e-mail, or a complete e-mail ad-
dress. If only a username is given, SENDER@{FQDN_of_lo-
cal_host} will be used for the sender. Default is daemon.

--with-recipient=ADDR The recepient(s) for e-mail, separated by whitespace (max. 8).
You can add recepients in the configuration file as well.

--with-trusted=UID Trusted users (must be a comma-separated list of numerical
UIDs). Only required if the configuration file must be on a path
writeable by others than root and the effective user.

--with-timeserver=HOST Set host address for time server (default is to use own clock).
You can set this in the configuration file as well. An address in
the configuration file will take precedence. Note that the simple
'time' service (port 37/tcp) is used.

--with-alttimeserver=HOST Set host address for an alternative (backup) time server.

--enable-stealth=XOR_VAL Enable stealth mode, and set XOR_VAL. XOR_VAL must be
decimal, in the range 127 -- 255, and will be used to obfuscate
literal strings.

--enable-micro-stealth=XOR_VAL As --enable-stealth , but without steganographic hidden con-
figuration file.

--enable-nocl=PW Command line parsing is disabled, but command-line argu-
ments will be read from STDIN if the first command line ar-
gument is PW. PW="" (empty string) will disable command
line parsing completely. This option may be used as addition
to --enable(-micro)-stealth to prevent interactive enforcement
of telltale output.

--enable-install-name=NAME Upon installation, rename every file from samhain(or yule
for the server) to NAME. To be used in conjunction with --with-
(micro-)stealth.

--enable-base=B1,B2 Set compiled-in key for email and logfile signature verification.
ONE string (no space) made of TWO comma-separated inte-
gers in the range 0 -- 2147483647. See Section 2 (p. 106) for
details on this option.

109

List of options for
the configure script

--enable-db-reload [CLIENT ONLY] Enable reload of file database on SIGHUP
(otherwise, only the config file will be read again).

--enable-xml-log Enable XML format for the log file.

--with-database=mysql/post-
gresql/oracle/odbc

Support logging to a relational database (MySQL, PostgreSQL,
Oracle or unixODBC). Oracle and unixODBC are not fully test-
ed. Requires the relevant development packages (e.g. libmysql-
client-dev on Ubuntu for MySQL).

--with-prelude Support logging to the Prelude IDS system. Requires the libpre-
lude library.

--with-libprelude-prefix=PFX Prefix where libprelude is installed. This will be used to search
libprelude-config in the PFX/bin/ directory.

--disable-ipv6 Disable IPv6 support.

--enable-debug[=gdb] Enable debugging. Will slow down things, increase resource
usage, and may leak information that should be kept secure.
Will dump 'core' and 'samhain_backtrace' in the root directory
on segfault. Do not use in production code.

If used as --enable-debug=gdb, will only compile in debugging
symbols for the GNU gdb compiler. This is more suitable for
debugging the code itself.

--enable-ptrace Periodically check whether a debugger is attached, and abort
if yes. Only takes effect if --enable-debug is not used. Only
tested on Linux.

--with-cflags=FLAGS Additional flags to pass to the compiler.

--with-libs=LIBS Additional libraries to link with.

--disable-largefile Disable support for large files (> 2GB). Large file support is
enabled automatically if your system supports it.

--enable-posix-acl Compile with support for checking posix ACLs of files. This is
compiled in by default if the required libraries and header files
are present, but using this option will turn the 'soft fail' into a
'hard fail' if it can't be compiled in.

--enable-selinux Compile with support for checking SELINUX attributes of
files. This is compiled in by default if the required libraries and
header files are present, but using this option will turn the 'soft
fail' into a 'hard fail' if it can't be compiled in.

--enable-udp This options enables code to listen on port 514/upd, i.e. the sys-
log port. Thus the server can receive syslog reports from remote
hosts (if they are configured to send), and log them to any of the
log facilities supported by samhain. If you compile in support
for this, you still need to enable it in the runtime configuration
file.

--disable-dnmalloc This options disables use of the dnmalloc allocator that is the
default since samhain 2.4.5, and reverts to using the standard
allocator provided by your system.

--disable-ssp This options disables use of the GCC stack protector.

--enable-suid With this option, samhain will honour the SUID bit instead of
resetting all privileges to the real UID of the process. Required

110

List of options for
the configure script

for Nagios if samhain is invoked by the Nagios plugin itself,
unless you want to use sudo instead.

--disable-shellexpand This options disables the expansion of shell commands in the
configuration file.

--disable-external-scripts This options disables the possibility to call an external program
to log an event (or perform active response).

--enable-message-queue[=MODE] This options enables logging to a POSIX message queue, where
MODE should be the octal permission for the queue (default
is 0700).

2. Optional modules to perform additional
checks

These are all client-only options, as the server does not perform any checks (if you want to run checks
on the log server host, you need to run a client there as well).

--enable-login-watch [CLIENT ONLY] Compile in the module to watch for login/logout
events.

--enable-mounts-check [CLIENT ONLY] Compile in the module to check for correct mount
options.

--enable-userfiles [CLIENT ONLY] Compile in the module to check for files in user
home directories (i.e. with paths relative to $HOME for all users).

--enable-suidcheck [CLIENT ONLY] Compile in the module to check file system for
SUID/SGID binaries not in the database.

3. OpenPGP Signatures on Configura-
tion/Database Files

--with-gpg=PATH Use GnuPG to verify database/configuration file. The public
key of the effective user, usually root, (in ~/.gnupg/pub-
ring.gpg) will be used.

--with-keyid=0x<hex KeyID> This optional argument allows to specify a key ID, if there is
more than one key in your keyring. This is only used for the
installation routine, and for configuring the samhainadmin.pl
convenience script.

--with-checksum=CHECKSUM Compile in TIGER checksum of the gpg binary. CHECKSUM
must be the full line output by samhain or gpg when computing
the checksum.

--with-fp=FINGERPRINT Compile in the fingerprint of the key used to sign the configu-
ration/database file. If used, samhain will verify the fingerprint,
but still report on the used public key.

4. OpenBSD Signify Signatures on Configura-
tion/Database Files

--with-signify=PATH Use signify (signify-openbsd on Debian flavour Linuxes) to
verify database/configuration file. The public key of the ef-

111

List of options for
the configure script

fective user, usually root, (in ~/.signify/instal-
l_name.pub) will be used (where install_name is the
name under which samhain is installed).

--with-checksum=CHECKSUM Compile in TIGER192 checksum of the signify binary.
CHECKSUM can be determined either using samhain -H or
gpg --load-extension tiger --print-md TIGER192

--with-pubkey-checksum=CHECK-
SUM

Compile in TIGER192 checksum of the ~/.signify/in-
stall_name.pub public key used to verify the signature of
signed database/configuration files. CHECKSUM can be deter-
mined either using samhain -H or gpg --load-extension tiger
--print-md TIGER192

5. Client/Server Connectivity
--enable-network=client/server Compile a client or server, rather than a standalone version.

--disable-encrypt Disable encryption for client/server communication.

--disable-srp Disable the use of the zero-knowledge SRP protocol to authen-
ticate to log server, and use a (faster, but less secure) chal-
lenge-response protocol. This must be set to the same value for
client and server, i.e. either disabled for client and server, or
for none of both.

--with-libwrap[=PATH] [SERVER ONLY] Build the server with support for libwrap
(Wietse Venema's TCP wrappers library). In /etc/host-
s.allow and/or /etc/hosts.deny, use 'yule' or the name
defined with --enable-install-name=NAME for the name of the
daemon.

--with-port=PORT The port on which the server will listen (default is 49777), or
to which the client will connect, respectively. This must be set
to the same value for client and server. Only needed if this port
is already used by some other application. Port numbers below
1024 require root privileges for the server.

--with-logserver=HOST [CLIENT ONLY] The host address of the log server. This can
be set in the configuration file. A compiled-in address is only
required if you want to fetch the configuration file from the
log server. An address in the configuration file will take prece-
dence.

--with-altlogserver=HOST [CLIENT ONLY] The host address of an alternative (backup)
log server.

6. Paths
Compiled-in paths may be as long as 255 chars. If the --enable-(micro-)stealth option is used, the limit
is 127 chars. The paths to the database, log file, and pid/lock file can be overridden in the configuration
file (see Section 1 (p. 117)).

Tip

If using NFS with clients on different hosts accesing the same files, you can set the
database, log file, and pid/lock file names to "AUTO" in the configuration file to simply
tack on the hostname on the compiled-in path. The same length limits apply.

112

List of options for
the configure script

--prefix=PREFIX The install prefix. Default is none, and using the Filesystem Hier-
archy Standard 2.2 directory layout. If you prefer the GNU layout
(everything under /usr/local), use --prefix=/usr/local. See Sec-
tion 10 (p. 9) for details.

--sbindir=DIR The binary directory (default is /usr/local/sbin)

--localstatedir=DPFX The state data directory prefix (default is /var). Data will be
written to DPFX/lib/ install_name.

--with-state-dir=DIR The state data directory (default is DPFX/lib/instal-
l_name). Data will be written to this directory.

--mandir=MPREFIX The man directory directory prefix (default is /usr/lo-
cal/share/man).

--with-tmp-dir=TPFX The directory where tmp files are created (config/database down-
loads from server, extracted PGP-signed parts of config/database
files) (default is HOME).

--with-config-file=FILE The full path of the configuration file (default is /etc/(in-
stall_name)rc).

--with-log-file=FILE The path of the log file (default is DPFX/log/
samhain_log).

--with-pid-file=FILE The path of the PID file (default is DPFX/run/(instal-
l_name).pid).

--with-html-file=FILE [SERVER ONLY] The path of the HTML status file where the
current status of clients is displayed (default is DPFX/log/
(install_name).html).

--with-console=PATH The path of the console (default is /dev/console). This may
be a FIFO.

--with-altconsole=PATH The path of a second console (default is none). This may be a
FIFO. If defined, console output will always go to both console
devices (but note that console devices are only used when run-
ning as daemon).

113

Appendix B. List of command line
options
1. General

1. -D, --daemon Run as daemon.

2. --foreground Stay in the foreground, do not run as daemon.

3. -f, --forever Loop forever, even if not daemon.

4. --bind-address=<IP-Address> Use this IP address (i.e. interface) for outgoing connections (e.g.
on multi-interface machines).

5. --server-port=<port number> Connect to this port on the server (client-side option for client-server
connection).

6. --server-host=<hostname/IP address> Connect to this server host (client-side option for client-
server connection). Using this option a second time will set the backup server host. Reloading the
configuration with a server defined in the configuration file will overwrite the original CL values.

7. -s <arg>, --set-syslog-severity=<arg> Set the severity threshold for syslog. arg may be one of
none, debug, info, notice, warn, mark, err, crit, alert .

8. -l <arg>, --set-log-severity=<arg> Set the severity threshold for logfile. arg may be one of none,
debug, info, notice, warn, mark, err, crit, alert .

9. -m <arg>, --set-mail-severity=<arg> Set the severity threshold for e-mail. arg may be one of
none, debug, info, notice, warn, mark, err, crit, alert .

10.--set-database-severity=<arg> Set the severity threshold for logging to a RDBMS. arg may be
one of none, debug, info, notice, warn, mark, err, crit, alert .

11.--set-prelude-severity=<arg> Set the severity threshold for logging to the Prelude IDS system. arg
may be one of none, debug, info, notice, warn, mark, err, crit, alert .

12.-p <arg>, --set-print-severity=<arg> Set the severity threshold for terminal/console. arg may be
one of none, debug, info, notice, warn, mark, err, crit, alert .

13.-x <arg>, --set-extern-severity=<arg> Set the severity threshold for external program(s). arg may
be one of none, debug, info, notice, warn, mark, err, crit, alert .

14.-L <arg>, --verify-log=<arg> Verify the integrity of the log file and print the entries (arg is the
path of the log file).

15.-j, --just-list Modify -L to just list the logfile, rather than verify (to de-obfuscate the logfile if you
have compiled for stealth mode). Order matters: this must come before -L.

16.-M <arg>, --verify-mail=<arg> Verify the integrity of e-mailed messages (arg is the path of the
mail box).

17.-V <arg>, --add-key=<arg> Add key material to the compiled-in key (see Section 2 (p. 106)).
arg must be of the form key@/path/to/executable. Output will be written to /path/to/exe-
cutable.out.

18.-H <arg>, --hash-string=<arg> Print the hash of a string / the checksum of a file, and exit. If
arg starts with a '/', it is assumed to be a file, otherwise a string. This function is useful to test the
hash algorithm.

114

List of command line options

19.-z <arg>, --tracelevel=<arg> If compiled with --enable-debug: arg > 0 to switch on debug output.
If compiled with --enable-trace: arg > 0 max. level for call tracing.

20.-i <arg>, --milestone=<arg> If compiled with --enable-trace: trace from milestone arg to arg+1.
If arg = -1, trace all.

21.-o <arg>, --outfile=<filename> Pathname for the output filename (relevant for the options --list-
database and --create-database).

22.-d <arg>, --list-database=<arg> List the database file arg(use ̀ `default'' for the compiled-in path).
The listing can be modified in various ways by prepending some other options (see next).

23.--list-file=<path> Modify --list-database to list the literal content of a file, if this has been stored.
Order matters: this must come before --list-database.

24.-a, --full-detail Modify --list-database to list full details (numeric mode, owner, group, all three
timestamps (ctime, mtime, atime), and the checksum. Order matters: this must come before --list-
database.

25.--delimited Same as --full-detail, but with comma-delimited fields. Order matters: this must come
before --list-database.

26.--binary This will list the database in the binary format of the database, i.e. it will output another
database. Intended to be used together with --list-filter to create a partial database. Order matters:
this must come before --list-database.

27.--list-filter=<filename> Modify --list-database to list only those files listed in the text file <file-
name> (one path per line). Together with the --binary option this allows to create a partial database.
Order matters: this must come before --list-database.

28.--verify-database=<arg> Verify (the integrity of the files in) the database given as argument, and
exit with a status of success or failure. The configuration file will NOT be read, the policy record-
ed in the baseline database will be used instead. For more verbosity, the option --set-print-severi-
ty=<arg>> can be prepended. Intended to be used with a partial database created by --binary --
list-filter=<filter_filename> --list-database=<database_filename>

29.--create-database=<arg> Create a baseline database for the files listed in the textfile arg(one path
per line). The configuration file will NOT be read, the policy recorded in the baseline database will
be ReadOnly, and the content of files will optionally be stored if the path in the list is preceded
by a '+' (plus) sign. For choosing the output pathname, the option --outfile=<filename> should be
prepended. For more verbosity, the option --set-print-severity=<arg> can be prepended.

30.--init-rootfs=<arg> Use the directory given as arg as the root of the filesystem when initializing
the database. Paths in the configuration file are considered to be relative to this directory, i.e. the
leading '/' represents the specified filesystem root rather than the true root.

The purpose of this option is to faciliate the generation of a baseline database for a root filesystem
(e.g. of an embedded/IOT device) mounted at some path.

31.-c, --copyright Print copyright information and exit.

32.-v, --version Show version information and compiled-in options.

33.-h, --help Print a short help on command line options and exit.

34.--trace-enable Print a trace of the execution flow.

35.--trace-logfile=<arg> Use file arg to log the trace.

2. samhain
1. -t <arg>, --set-checksum-test=<arg> Set file checking to init, update, or check. Use init to create

the database, update to update it, and check to check files against the database.

115

List of command line options

Tip

Yes, it is normal that update takes much more time than init.

2. -i, --interactive Use interactive mode for update(ask before updating an entry).

3. --listfile=<path> Use a text file comprising a list of files to update(one file per line).

4. -e <arg>, --set-export-severity=<arg> Set the severity threshold for forwarding messages to the
log server. arg may be one of none, debug, info, notice, warn, mark, err, crit, alert .

5. -r <arg>, --recursion=<arg> Set the default recursion level for directories (0 -- 99).

6. --init2stdout Write the database to stdout when performing the initialization.

3. yule
1. -S, --server Run as server. Only required if the binary is dual-purpose.

2. -q, --qualified Log received messages with the fully qualified name of client host.

3. --chroot=<arg> Chroot to to the directory arg(should be an absolute path.

4. -G, --gen-password Generate a random password suitable for use in the following option (16 hexa-
decimal digits).

5. -P <arg>, --password=<arg> Compute a client registry entry. arg is the chosen password (16
hexadecimal digits).

116

Appendix C. Configuration file syntax
and options
1. General

The configuration file for samhain is named samhainrc by default. Also by default, it is placed in
/etc. (Name and location is configurable at compile time). The distribution package comes with a
commented sample configuration file.

This section introduces the general structure of the configuration file. Details on individual entries in
the configuration files are discussed in Section 4 (p. 38) (which files to monitor), Section 1 (p. 19)
(what should be logged, which logging facilities should be used, and how these facilities are properly
configured), and Section 11 (p. 53) (monitoring login/logout events).

The configuration file contains several sections, indicated by headings in square brackets(e.g. [Data-
base]). Sections exist to group related directives and avoid eventual name clashes among options.
Any particular section may occur multiple times.

Each section may hold zero or more key= value pairs. Keys are not case sensitive, and space around
the '=' is allowed, as well as before the key and after the value. More specifically: the line is processed
by splitting into key and value at the first '=', trimming whitespace from the beginning and end of both
key and value, and converting the key to lowercase.

Blank lines and lines starting with '#' are comments. Everything before the first section and after an
[EOF] is ignored. The [EOF] end-of-file marker is optional. The file thus looks like:

 # this is a comment
 [Section heading]
 key1=value
 key2=value
 [Another section]
 key3=value
 key4=value

For boolean values the following are equivalent (case-insensitive): True, Yes, or 1. Likewise, the
following are equivalent (case-insensitive): False, No, or 0.

In lists, values can be separated by space, tabs, or commas.

Tip

Each section may occur multiple times.

Note

You can explicitely end the configuration file with an [EOF] (on a separate line), but
this is not required, unless there is some junk beyond that may confuse the parser. A PGP
signature does not qualify as 'junk' if samhain is compiled to verify the signature.

1.1. Shell expansion
As of version 2.5.3, it is possible to use shell expansion to define the value of an option. For any
configuration file option written as Key = $(shell_command) , the string contained within the

117

Configuration file syntax and options

$() will be passed literally to the shell (by invoking /bin/sh -c shell_command), and the first line
returned by the shell - after stripping the newline char - will replace the $(..). If there is no output
within 120 seconds, samhain will ignore the configuration option (and report an error).

Note

You cannot define just part of an option value this way. You need to write the shell ex-
pression such that it covers the whole option value (e.g. by including an 'echo -n foobar').

The PATH environment variable will be set to "/sbin:/bin:/usr/sbin:/usr/bin:/usr/ucb", the SHELL vari-
able to "/bin/sh", the IFS variable to " \t\n", and the TZ variable will be copied from the startup envi-
ronment. No other environment variables will be set.

In case you are unsure about the need for escaping: yes, the whole string will be passed as a single
argument to the shell, like calling /bin/sh -c ' shell_command' from the shell, BUT since this is
done from within a C program rather than from a shell, there are no single quotes surrounding the
whole string.

In the following example, we parse the output of ifconfig to supply a list of all interfaces to the
"PortCheckInterface" option.

#
Lines broken for display purposes. Must be ONE line in config file!!!

Linux/Solaris, FreeBSD, OpenBSD

$Linux:.*:.*
PortCheckInterface=$(/sbin/ifconfig | grep 'inet addr:' |
 sed 's/.*r:\([0-9.]*\).*/\1 /' | tr -d '\n'; echo)
$end

Solaris, FreeBSD, OpenBSD

$(SunOS|FreeBSD|OpenBSD):.*:.*
PortCheckInterface = $(/sbin/ifconfig -a| grep 'inet ' |
 sed 's/.*t \([0-9.]*\) .*/\1 /' | tr -d '\n';echo)
$end

1.2. Conditionals
Conditional inclusion of entries for some host(s) is supported via any number of @if.. / @else / @fi
directives. @if.., @else, and @fi must each be on separate lines. Configuration options in the @if..
(or the optional @else) branch will be read or ignored depending on the result of the test.

Supported tests are as follows:

hostname_matches @if hostname_matches regex will succeed if the hostname matches the
regular expression given.

system_matches @if system_matches regex will succeed if the string sysname:re-
lease:machine — i.e. $(uname -s):$(uname -r):$uname - m) — matches the
regular expression given.

file_exists @if file_exists path will succeed if a file with the given absolute path
exists. Wildcards/regular expression are not supported.

interface_exists @if interface_exists address will succeed if a network interface with
the given address exists.

118

Configuration file syntax and options

command_succeeds @if command_succeeds command will execute /bin/sh -c command and
succeed if the exit status is zero. The PATH environment variable will be
set to "/sbin:/bin:/usr/sbin:/usr/bin:/usr/ucb", the SHELL variable to "/bin/
sh", the IFS variable to " \t\n", and the TZ variable will be copied from the
startup environment. No other environment variables will be set.

You can negate a test by saying '@if not ..'. The 'not' may be replaced by a '!'. The following are all
valid: '@if not file_exists /etc/motd', '@if !file_exists /etc/motd', and '@if ! file_exists /etc/motd'.

Note on backward compatibility

For backward compatibility, instead of @if hostname_matches hostname you can
also say @hostname .

Likewise, instead of @if system_matches sysname:release:machine you can
also say $sysname:release:machine .

Also, the old method of negating by prepending a '!' to the '@' ('$') is still supported, as
well as the use of '@end' ('$end') instead of '@fi'.

 @if hostname_matches foobar
 # only read if hostname is 'foobar'
 @else
 # read if hostname is NOT 'foobar'
 @fi

 @if not hostname_matches foobar
 # not read if hostname is 'foobar'
 @fi

 @if system_matches Linux:2.6.24-21-generic:i686
 # only read if $(uname -s):$(uname -r):$(uname -m)
 # matches Linux:2.6.24-21-generic:i686
 @fi

 @if !system_matches Linux:2.6.24-21-generic:i686
 # not read if $(uname -s):$(uname -r):$(uname -m)
 # matches Linux:2.6.24-21-generic:i686
 @fi

2. Files to check
Allowed section headings (see Section 4.1 (p. 39) for more details) are:

[Attributes] , [LogFiles] , [GrowingLogFiles] , [IgnoreAll] , [IgnoreNone] , [ReadOnly] , [User0]
, [User1] , and [User2] , and [User3] , and [User4] , and [Prelink]

Placing an entry under one of these headings will select the respective policy for that entry (see Sec-
tion 4.1 (p. 39)). Entries under the above section headings must be of the form:

dir= [optional numerical recursion depth]path

file= path

3. Severity of events
Section heading (see Section 1.1 (p. 19) for more details):

119

Configuration file syntax and options

[EventSeverity]

Entries:

SeverityReadOnly= severity

SeverityLogFiles= severity

SeverityGrowingLogs= severity

SeverityIgnoreNone= severity

SeverityIgnoreAll= severity

SeverityAttributes= severity

SeverityUser0= severity

SeverityUser1= severity

SeverityUser2= severity

SeverityUser3= severity

SeverityUser4= severity

SeverityPrelink= severity

SeverityFiles= severity

SeverityDirs= severity

SeverityNames= severity

severity may be one of none, debug, info, notice, warn, mark, err, crit, alert .

4. Logging thresholds
Section heading (see Section 3 (p. 22) for more details):

[Log]

Entries:

MailSeverity= list of [optional specifier]threshold

PrintSeverity= list of [optional specifier]threshold

LogSeverity= list of [optional specifier]threshold

SyslogSeverity= list of [optional specifier]threshold

PreludeSeverity= list of [optional specifier]threshold

ExportSeverity= list of [optional specifier]threshold

ExternalSeverity= list of [optional specifier]threshold

DatabaseSeverity= list of [optional specifier]threshold

threshold may be one of none, debug, info, notice, warn, mark, err, crit, alert .

120

Configuration file syntax and options

The optional specifier may be one of '*', '!', or '=', which are interpreted as 'all', 'excluding', and 'only',
respectively. Examples: specifying '*' is equal to specify 'debug'; specifying '!*' is equal to specifying
'none'; 'info,!alert' is the range from 'info' to 'crit'; and 'info,!=mark' is info and above, but excluding
'mark'.

5. Watching login/logout events
Section heading:

[Utmp]

Entries:

LoginCheckActive= boolean — '1' to switch on, '0' to switch off.

LoginCheckInterval= seconds — Interval between checks.

SeverityLogin= severity — Severity for login events.

SeverityLoginMulti= severity — Severity for multiple logins by same user.

SeverityLogout= severity — Severity for logout events.

6. Checking for SUID/SGID files
Section heading:

[SuidCheck]

Entries:

SuidCheckActive= boolean — '1' to switch on, '0' to switch off.

SuidCheckExclude= path — A directory (and its subdirectories) to exclude from the check. Only
one directory can be specified this way.

SuidCheckSchedule= schedule — Crontab-like schedule for checks.

SeveritySuidCheck= severity — Severity for events.

SuidCheckFps= fps — Limit files per seconds for SUID check.

SuidCheckNosuid= boolean — Check filesystems mounted as nosuid. Defaults to not.

SuidCheckQuarantineFiles= boolean — Whether to quarantine files. Defaults to not.

SuidCheckQuarantineMethod= 0|1|2 — Quarantine method. Delete = 1, remove suid/sgid flags
= 1, move to quarantine directory = 2. Defaults to 1 (remove suid/sgid flags).

SuidCheckQuarantineDelete= boolean — Whether to delete rather than truncate, if method 0
(delete) is chosen. Default is truncate.

7. Checking for mount options
Section heading:

[Mounts]

Entries:

121

Configuration file syntax and options

MountCheckActive= boolean — 'yes' to switch on, 'no' to switch off (default = no).

MountCheckInterval= seconds — Interval between checks (default one day).

SeverityMountMissing= severity — Severity for missing mounts (default = err).

SeverityOptionMissing= severity — Severity for missing mount options (default = err).

CheckMount= /path [mount options] — Mount point to check. Mount options must be given
as comma-separated list, separated by a blank from the preceding mount point.

8. Checking for user files
Section heading:

[UserFiles]

Entries:

UserfilesActive= boolean — '1' to switch on, '0' to switch off.

UserfilesName= filename policy — Files to check for under each $HOME. Allowed values for
'policy' are: allignore, attributes, logfiles, loggrow, noignore (default), readonly, user0, user1, user2,
user3, and user4.

UserfilesCheckUids= uid list — A list of UIDs where we want to check. The default is all.
Ranges (e.g. 100-500) are allowed. If there is an open range (e.g. 1000-), it must be last in the list.

9. Checking for hidden/fake/required
processes

Section heading:

[ProcessCheck]

Entries:

ProcessCheckActive= boolean — 'true' to switch on, 'false' to switch off.

SeverityProcessCheck= severity — Severity for events (default is crit).

ProcessCheckMinPID= integer — Minimum PID (default is 0).

ProcessCheckMaxPID= integer — Maximum PID (default is 32767).

ProcessCheckInterval= seconds — Interval between checks.

ProcessCheckExists= POSIX regular expression — A process that is required to run. Must
match a substring in a line of the 'ps' output.

ProcessCheckPSPath= path — The path to ps (default: autodetected at compile time).

ProcessCheckPSArg= path — The argument to ps (default: autodetected at compile time). Note
that the first column must be the PID, except on Linux, where the format 'PID SPID ...' is expected
(spid = thread id), as shown by 'ps -eT'.

10. Checking for open ports
Section heading:

122

Configuration file syntax and options

[PortCheck]

Entries:

PortCheckActive= boolean — 'true' to switch on, 'false' to switch off.

SeverityPortCheck= severity — Severity for events (default is crit).

PortCheckRequired= interface:portlist — Services (open ports) that are required.

PortCheckOptional= interface:portlist — Services (open ports) that are optional (allowed,
but not required).

PortCheckIgnore= interface:portlist — Services (open ports) that should be ignored (no
reports for this port).

PortCheckInterface= (list of) IP address(es) — Additional interface to scan (up to 63
interfaces).

PortCheckDevice= (list of) device(s) — Device(s) to scan, regardless of address(es) as-
signed to them (each address counts towards the maximum of 63 interfaces for PortCheckInterface).
Devices will be re-checked before scan to account for address changes.

PortCheckInterval= seconds — Interval between checks (default 300).

PortCheckUDP= boolean — Whether to scan UDP ports as well (default yes).

PortCheckMinPort= integer — The lowest port to be checked (defaults to 0).

PortCheckMaxPort= integer — The highest port to be checked (defaults to 65535).

11. Logfile monitoring/analysis
Section heading:

[Logmon]

LogmonActive= boolean — 'true' to switch on, 'false' to switch off.

LogmonSaveDir= /abslute/path sets the directory where checkpoint data for logfiles is stored
(default: same as for pid file).

LogmonClean= boolean delete old checkpoint data unmodified for 30 days or more (default: off).

LogmonInterval= seconds — Interval between checks (default 10).

LogmonWatch= TYPE:path[:format] — File to monitor.

LogmonHidePID= boolean — Suppress PID in syslog messages, 'true' to switch on, 'false' to switch
off.is an option

LogmonMarkSeverity= severity — Severity for reports on missing heartbeat messages if the
messages themselves are assigned to the 'trash' queue (default: crit).

LogmonBurstThreshold= number — The number of repeated messages within 12 minutes that
must be exceeded to report a burst of repeated messages (default: 24).

LogmonBurstQueue= queue — Set the reporting queue for reporting bursts of similar log messages
(default: don't report).

LogmonBurstCron= boolean — Whether to report also on bursts of repeated cron messages (de-
faul: false).

123

Configuration file syntax and options

LogmonDeadtime= seconds — Do not report a correlated event again within the given time (de-
fault: 60 seconds).

LogmonQueue= label:[interval]:(sum|report):severity[:alias] — defines
an output queue.

LogmonHost= (perl)regex — Causes the following rules to be applied only to entries for this
host(s).

LogmonEndHost — Explicitely ends a preceding LogmonHost directive.

LogmonGroup= (perl)regex — Causes the following rules to be applied only if the group regex
matches.

LogmonEndGroup — Explicitely ends a preceding LogmonGroup directive.

LogmonRule= queue_label:(perl)regex — matches a logfile entry against the provided
regular expression.

12. Database
Section heading:

[Database]

Entries:

SetDBHost= db_host — Host where the DB server runs (default: localhost). Should be numeric
IP address for PostgreSQL.

SetDBName= db_name — Name of the database (default: samhain).

SetDBTable= db_table — Name of the database table (default: log).

SetDBUser= db_user — Connect as this user (default: samhain).

SetDBPassword= db_password — Use this password (default: none).

SetDBServerTstamp= boolean — Log server timestamp for client messages (default: true).

UsePersistent= boolean — Use a persistent connection (default: true).

AddToDBHash= field — Add a database field to the set of fields that are used for tagging the log
record with an MD5 hash.

13. Miscellaneous
Section heading:

[Misc]

Entries:

Daemon= boolean — Whether to become a daemon (default: no)

MessageHeader= "%S %T " — Specify custom format for message header. The following place-
holders are supported: %S for the message severity, %T for the timestamp, %C for the message class,
%F for the source file, %L for the source line number, and %E for the status (might provide additional
information in case of internal errors).

124

Configuration file syntax and options

VersionString= string — Set version string to include in file signature database (along with host-
name and date).

SetReverseLookup= boolean — If false, skip reverse lookups when connecting to a host known
by name rather than IP address.

AvoidBlock= boolean — Run stat/lstat system calls in a subprocess to avoid that a flaky NFS mount
blocks the process (defaults to off for the server, on for the client/standalone executable, except off
for Cygwin/Windows).

HideSetup= boolean — Don't log names of config/database files on startup.

SyslogFacility= LOG_xxx — Set syslog facility (default is LOG_AUTHPRIV).

SyslogMapStampTo= LOG_xxx — Set syslog priority for heartbeat messages (timestamps). Default
is LOG_ERR.

MACType= HASH-TIGER/HMAC-TIGER — Set type of message authentication code (HMAC).
Must be identical on client and server.

SetLoopTime= seconds — Interval between timestamp messages (60).

SetConsole= device — Set the console device (/dev/console).

SetReportFile= path — Set the path for file check reports (none). Can be an absolute path or 'none'
to disable. Format is lines comprised of a timestamp string followed by number of seconds since the
Epoch followed by six integers: bytes hashed, dirs checked, files checked, files reported, errors, files
that should be but aren't directories.

SetReportGroup= group — Set the unix group (numeric or name, defaults to 0) for the file check
reports.

SetSigtrapMaxDuration= microseconds — This directive allows to configure the timeout for
handling the sigtrap signal in the antidebug code (enabled with the --enable-ptrace configure option)
(500000, equal to 500ms). Set to a higher value if the antidebug handler is triggered under high load.
Note that for security, you can set this value only once while the daemon runs.

MessageQueueActive= boolean — Use SysV IPC message queue (false).

PreludeMapToInfo= list of samhain severities — The severities that should be mapped
to impact severity 'info' in prelude reports (default: none). This option is only available with libprelude
0.9.

PreludeMapToLow= list of samhain severities — The severities that should be mapped
to impact severity 'low' in prelude reports (default: none). This option is only available with libprelude
0.9.

PreludeMapToMedium= list of samhain severities — The severities that should be
mapped to impact severity 'medium' in prelude reports (default: none). This option is only available
with libprelude 0.9.

PreludeMapToHigh= list of samhain severities — The severities that should be mapped
to impact severity 'high' in prelude reports (default: none). This option is only available with libprelude
0.9.

PreludeProfile= profile — Set the profile (sensor name) for use with the Prelude IDS. This option
is only available with libprelude 0.9. Default is 'samhain' (prelude 0.9) or 'Samhain' (prelude 0.8).

SetMailAddress= recepient — Add a recepient e-mail address.

SetMailAlias= listname: username@hostname — Add a list of recepient e-mail address.

125

Configuration file syntax and options

SetAddrSeverity= severity — Defines a severity threshold for an individual recipient (list). Must
be a subset of the global MailSeverity setting. Applies to the last defined recipient (list).

SetMailFilterAnd= list — Defines a list of strings all of which must match a message, otherwise
it will not be mailed. Applies to the last defined recipient (list).

SetMailFilterOr= list — Defines a list of strings at least one of which must match a message,
otherwise it will not be mailed. Applies to the last defined recipient (list).

SetMailFilterNot= list — Defines a list of strings none of which should match a message, otherwise
it will not be mailed. Applies to the last defined recipient (list).

CloseAddress — Explicitely closes the definition of a recipient (list).

SetMailTime= seconds — Maximum time interval between mail messages (86400 sec).

SetMailNum= 0 -- 16383 — Maximum number of pending mails on internal queue (10).

SetMailRelay= IP address — The mail relay (for offsite mail; default: none).

MailSubject= string — Custom format for the email subject (none).

SetMailSender= string — Sender for the 'From:' field.

SetMailPort= port number — Port number to use for SMTP (default: 25).

SamhainPath= path — The path of the process image.

SetBindAddress= IP address — The IP address (i.e. interface on multi-interface box) to use for
outgoing connections (e.g. e-mail).

SetTimeServer= IP address — The time server. Note that the simple 'time' service (port 37/tcp)
is used.

TrustedUser= username(,username,..) . — List of additional trusted users.

SetLogfilePath= AUTO or /path — Path to log file (AUTO to tack hostname on compiled-in path).

SetLockfilePath= AUTO or /path — Path to lock file (AUTO to tack hostname on compiled-in
path).

The following options are only relevant for standalone or client executables:

SetNiceLevel= -19..19 — Set scheduling priority during file check. — (see 'man nice').

SetIOLimit= bps — Set IO limits (kilobytes per second) for file check.

SetDropCache= boolean — Drop checksummed files from cache (unless they were cached before).
Defaults to false for performance reasons.

ReportCheckflags= boolean — Report checking policy (check flags) for new files, and if changed
also for changed files (defaults to no). Added in version 4.0.

StartupLoadDelay= seconds — At startup, delay the download of the baseline databse from the
server for the given time span (default is no delay).

SetDeltaRetryCount= integer — The number of times the client will retry to download a delta
database from the server after the initial attempt has failed (default is 0, i.e. do not retry).

SetDeltaRetryInterval= seconds — The interval between successive tries to download a delta
database (default is 60 seconds).

126

Configuration file syntax and options

SetFilecheckTime= seconds — Interval between file checks (600).

FileCheckScheduleOne= schedule — Crontab-like schedule for file checks.

UseRsrcCheck= boolean — Check the ..namedfork/rsrc file on Mac OS X (defaults to no since
this mechanism is deprecated by Apple).

UseHardlinkCheck= boolean — Compare number of hardlinks to number of subdirectories for
directories.

HardlinkOffset= N: /path — Exception (use multiple times for multiple exceptions). N is offset
(actual - expected hardlinks) for /path.

AddOKChars= N1, N2, .. — List of acceptable characters (byte value(s)) for the check for
weird filenames. Nn may be hex (leading '0x': 0xNN), octal (leading zero: 0NNN), or decimal. Use
'all' for all.

FilenamesAreUTF8= boolean — If set, samhain will check for invalid UTF-8 encoding and for
filenames ending in invisible characters.

IgnoreAdded= path_regex — Ignore if this file/directory is added/created. The path_regex argu-
ment has to start with a forward slash and has to match the full path..

IgnoreMissing= path_regex — Ignore if this file/directory is missing/deleted. the path_regex ar-
gument has to start with a forward slash and has to match the full path.

IgnoreModified= path_regex — Ignore if this file/directory is modified (3.0.11+, useful for tran-
sient files that get modified during their lifetime). the path_regex argument has to start with a forward
slash and has to match the full path.

LooseDirCheck= boolean — Ignore changes of directory inodes if nothing but size and timestamps
have changed.

SetAuditdFlags= r|w|x|a — Set the flags on which audit rules will trigger (defaults to wa [=write|
change attributes]).

SkipChecksum= list of conditions — Skip checksumming if the list of condition holds true

FileType= definition — User-defined file type specification (to be used for the SkipChecksum=
... command).

ReportOnlyOnce= boolean — Report only once on a modified file (yes).

ReportFullDetail= boolean — Report in full detail on modified files (no).

UseLocalTime= boolean — Report file timestamps in local time rather than GMT (no). Do not
use this with Beltane.

ChecksumTest= none/init/update/check — The default action (default is none).

SetPrelinkPath= path — The path to the prelink binary (default is /usr/sbin/prelink).

SetPrelinkChecksum= checksum — The checksum of the prelink binary.

SetLogServer= IP address — The log server.

SetServerPort= port number — The port on the log server (defaults to the compiled-in port,
which is 49777 unless redefined at compile time).

SetThrottle= milliseconds — An option to throttle the network throughput when downloading
the database from the server. The allowed maximum of 1000 msec throttles to about 64 kB/sec, less
is faster.

127

Configuration file syntax and options

SetDatabasePath= AUTO or /path — Path to database (AUTO to tack hostname on compiled-in
path).

DigestAlgo= TIGER192/SHA1/MD5/SHA256 — Use SHA1, MD5, or SHA2-256 instead of the
TIGER checksum (default: TIGER192).

RedefReadOnly= +XXX or -XXX — Add or subtract test XXX from the ReadOnly policy.

RedefAttributes= +XXX or -XXX — Add or subtract test XXX from the Attributes policy.

RedefLogFiles= +XXX or -XXX — Add or subtract test XXX from the LogFiles policy.

RedefGrowingLogFiles= -XXX or ~XXX — Add or subtract test XXX from the GrowingLogFiles
policy.

RedefIgnoreAll= +XXX or -XXX — Add or subtract test XXX from the IgnoreAll policy.

RedefIgnoreNone= +XXX or -XXX — Add or subtract test XXX from the IgnoreNone policy.

RedefUser0= +XXX or -XXX — Add or subtract test XXX from the User0 policy.

RedefUser1= +XXX or -XXX — Add or subtract test XXX from the User1 policy.

RedefUser2= +XXX or -XXX — Add or subtract test XXX from the User2 policy.

RedefUser3= +XXX or -XXX — Add or subtract test XXX from the User3 policy.

RedefUser4= +XXX or -XXX — Add or subtract test XXX from the User4 policy.

UseAttributesCheck= boolean — Check file attributes on linux file systems (default=yes).

UseACLCheck= boolean — Check ACL policies for files.

UseSelinuxCheck= boolean — Check SELINUX attributes for files.

SetFullSilent= boolean — Also suppress informational messages during silent file scan triggered
by SIGTSTP.

The following options are only relevant for the server:

SetUseSocket= boolean — If unset, do not open the command socket (server only). This socket
allows to advise the server to transmit commands to clients as soon as they connect to the server next
time.

SetSocketAllowUid= UID — Which user can connect to the command socket. The default is 0 (root).

SetSocketPassword= password — Password (max. 14 chars, no '@') for password-based authen-
tication on the command socket (only if the OS does not support passing credentials via sockets).

SetChrootDir= path — If set, chroot to this directory (server only).

SetStripDomain= boolean — Whether to strip the domain from the client hostname when logging
client messages (server only; default: yes).

SetClientFromAccept= boolean — If true, use client address as known to the communication layer.
Else (default) use client name as claimed by the client, try to verify against the address known to the
communication layer, and accept (with a warning message) even if this fails.

UseClientSeverity= boolean — If set to 'yes', don't assign a special severity (priority) to client
messages.

UseClientClass= boolean — If set to 'yes', don't assign a special class to client messages.

128

Configuration file syntax and options

SetServerPort= port number — The port that the server should use for listening (default is 49777).

SetServerInterface= IP address — The IP address (i.e. interface on multi-interface box) that the
server should use for listening (default is all). Use INADDR_ANY to reset to all.

SeverityLookup= severity — Severity for name lookup errors when verifying (on the server side)
that the socket peer matches the hostname claimed by the client. See the preceding option.

UseSeparateLogs= boolean — If true, messages from different clients will be logged to separate
log files (the name of the client will be appended to the name of the main log file to construct the
logfile name). Default: false.

SetClientTimeLimit= seconds — Maximum time limit until next client message (server-only). If
no message is received from a client within that limit, the respective client will be reported as dead.

SetConnectionTimeout= seconds — Timeout after which a currently active connection to a client
will be closed by the server (900 seconds). This timeout has the purpose to prevent bad clients from
hogging server resources.

SetUDPActive= boolean — yule 1.2.8+: Listen on 514/udp (syslog). Default: false.

Remarks: (i) root and the effective user are always trusted. (ii) If no time server is given, the local host
clock is used. (iii) If the path of the process image is given, the process image will be checksummed
at startup and exit, and both checksums compared.

14. External
Definition of an arbitrary number of external programs/scripts (see Chapter 7 (p. 83)). Section heading:

[External]

Entries:

OpenCommand= /full/path/to/program — Starts new command definition.

CloseCommand — Ends new command definition (optional syntactic sugar).

SetType= log/srv — Type/purpose of the program.

SetCommandline= list — The command line.

SetEnviron= KEY=value — Environment variable (can be repeated).

SetChecksum= TIGER checksum — Checksum of the program.

SetCredentials= username — User whose credentials shall be used.

SetFilterNot= list — Regular expression patterns not allowed in message.

SetFilterAnd= list — Regular expression patterns required (ALL) in message.

SetFilterOr= list — Regular expression patterns required (at least one) in message.

SetDeadtime= seconds — Deadtime between consecutive calls.

SetDefault= boolean — Set default environment (HOME from /etc/passwd, SHELL=/bin/sh,
PATH=/sbin:/usr/sbin:/bin:/usr/bin).

15. Clients
This section is relevant for yule only. Section heading:

129

Configuration file syntax and options

[Clients]

Entries must be of the form:

Client= hostname@salt@verifier

See Section 3 (p. 73) on how to compute a valid entry.

The hostname must be the same name that the client retrieves from the host on which it runs. Usual-
ly, this will be a fully qualified hostname, no numerical address. However, there is no method that
guarantees to yield the fully qualified hostname (it is not even guaranteed that a host has one ...). The
only way to know for sure is to set up the client, and check whether the connection is refused by the
server with a message like Connection attempt from unregistered host hostname In that case,
hostname is what you should use.

CAVEAT

Problems and oddities encountered in client/server setups (like client messages from
127.0.0.1, server warnings about unknown/unresolved peer, etc. are always(at least so
far) due to incorrect configuration of the DNS or the /etc/hosts file.

A surprisingly large number of hosts are not able to determine the own hostname, or
reverse lookup adresses on the own local network. Don't bother asking about such prob-
lems — fix your DNS.

Alias= alias@hostname — This option allows to define an alias for a hostname, which is evaluated
when the 'SetClientFromAccept' option is active. This may be used to fix the problem that the remote
samhain client reports itself with different hostname than known to the network layer on the side of the
yule server, which e.g. may happen if you route the samhain traffic through a secondary management
network that is different from the primary network of the system.

130

Appendix D. List of database fields
The database may hold (i) internal message from yule, the log server, and (ii) client messages. The
latter result in two rows: one for the client message, and one for the server message recording the
arrival of the client message, the originating remote host, and the timestamp. The different message
types can be recognized by the log_ref field (see below).

Many database fields record details of files (see man stat), before (_old) and after (_new) a detected
modification. For some items, both numeric (iXXX) and string values are reported, because the trans-
lation between both is host-specific. This allows to perform updates of the file signature database(s)
on the server side. Other fields are listed below. Basically, most of the fields supply additional infor-
mation for log_msg if relevant.

1. General
log_index Unique index of the message (primary key).

log_ref Zero for internal server messages, NULL for messages received from
a client, log_index(client_message) for server timestamp of client
message.

log_host The host where the message originates.

log_time The timestamp of the message.

log_sev The severity/priority of the message.

log_msg The message itself.

log_hash A checksum over the union of user-defineable fields.

entry_status NEW for new entries. Used by the Beltane frontend to track the status
of a message.

path Path of a file (whenever a message refers to a file).

userid UID of the current user if relevant (e.g. if access to a file fails).

grp Name of a group (for messages reporting problems with a GID, e.g.
no entry in /etc/group).

program Name of the current process (startup message).

subroutine Name of an internal subroutine (in messages reporting failure of a
subroutine).

status Exit status value of samhain.

hash Checksum of configuration file (if gpg not used). Startup message.

path_data, hash_data Path and checksum of data file (if gpg not used). Startup message.

key_uid, key_id User ID and key id of GPG key used to sign the configuration file.
Startup message.

key_uid_data User ID of GPG key used to sign the data file (different keys for con-
figuration and data file cause program abort). Startup failure message.

peer Address of a connecting host.

131

List of database fields

obj Generic field to hold additional information. Occasionally used.

interface Name of a library routine/interface (error messages).

dir Name of a directory, if relevant.

linked_path In reports about dangling symlinks.

port Port number (in reports about connections errors).

service Logging facility or remote service (failure reports).

2. Modules
module Name of a samhain module (e.g. the module to watch login/logout events). Used

in initialization/error reports for a module.

return_code Return code from a module. Used in initialization/error reports for a module.

syscall ID of bad syscall. Formerly used by kernel checking module.

ip IP address. Login/logout watch. Also used in received syslog messages (see below).

tty Terminal used. Login/logout watch.

time Login/logout time. Also used in some other messages (e.g. time to complete file
check).

fromhost Host from which user is logged in. Login/logout watch.

3. Syslog
ip IP of remote host received syslog reports. Also used in the login/logout watch module

(see above).

facility Syslog facility for received syslog reports.

priority Syslog priority for received syslog reports.

syslog_msg Syslog message for received syslog reports.

132

Appendix E. List of recognized file
types

Filetypes have hierarchical names of the form G1:G2:G3, and in the "match(filetype)" condition you
can specify filetypes as G1:G2:G3, or G1:G2 (less specific), or G1 (generic). The list of currently
(version 2.8.2) recognized filetypes comprises:

IMAGE:COMPRESSED:JPG
 IMAGE:COMPRESSED:PNG IMAGE:COMPRESSED:JPG IMAGE:COMPRESSED:GIF
 IMAGE:COMPRESSED:TIFF IMAGE:COMPRESSED:PCX IMAGE:RAW:BMP
 IMAGE:RAW:XPM IMAGE:SPECIAL:AUTOCAD IMAGE:SPECIAL:COREL
 IMAGE:SPECIAL:FITS IMAGE:SPECIAL:VISIO IMAGE:SPECIAL:DICM
 IMAGE:SPECIAL:PHS IMAGE:SPECIAL:XCF MOVIE:COMPRESSED:RIFF
 MOVIE:RAW:MOV MOVIE:COMPRESSED:MPG MOVIE:COMPRESSED:QT
 MOVIE:COMPRESSED:FLI MOVIE:COMPRESSED:FLASH
 MOVIE:COMPRESSED:WMV AUDIO:RAW:SND AUDIO:RAW:EMOD AUDIO:RAW:MOD
 AUDIO:RAW:WAVE AUDIO:RAW:DEC AUDIO:STANDARD:MIDI
 AUDIO:COMPRESSED:REAL AUDIO:COMPRESSED:OGG
 AUDIO:COMPRESSED:FLAC AUDIO:COMPRESSED:MP3
 ARCHIVE:COMPRESSED:LHA ARCHIVE:COMPRESSED:RAR
 ARCHIVE:COMPRESSED:ZIP ARCHIVE:COMPRESSED:7Z
 ARCHIVE:COMPRESSED:COMPRESS ARCHIVE:COMPRESSED:GZIP
 ARCHIVE:COMPRESSED:BZIP2 ARCHIVE:COMPRESSED:ARJ
 ARCHIVE:COMPRESSED:HPAK ARCHIVE:COMPRESSED:JAM
 ARCHIVE:COMPRESSED:SQUISH ARCHIVE:COMPRESSED:CAB
 ARCHIVE:COMPRESSED:ZOO ARCHIVE:COMPRESSED:XPK
 ARCHIVE:PACKAGE:RPM ARCHIVE:PACKAGE:DEB ARCHIVE:UNIX:AR
 ARCHIVE:UNIX:TAR LIBRARY:JAVA:CLASS DOCUMENT:OFFICE:WORD
 DOCUMENT:OFFICE:EXCEL DOCUMENT:OFFICE:WORD DOCUMENT:OFFICE:ALL
 DOCUMENT:ADOBE:PDF DOCUMENT:ADOBE:EPS DOCUMENT:STANDARD:RTF
 DOCUMENT:ID:VCARD EXECUTABLE:DOS:EXE EXECUTABLE:DOS:COM
 EXECUTABLE:UNIX:SHELL EXECUTABLE:UNIX:ELF EXECUTABLE:DOS:COM
 EXECUTABLE:AMIGAOS:EXECUTABLE DATABASE:ANY:ACCESS
 DATABASE:ANY:MYSQL

133

